Acta Mechanica Solida Sinica

, Volume 30, Issue 3, pp 299–305 | Cite as

Torsional wave in a circular micro-tube with clogging attached to the inner surface

  • Limei Xu
  • Hui Fan
  • Yufeng Zhou


In the present paper, we study the torsional wave propagation along a micro-tube with clogging attached to its inner surface. The clogging accumulated on the inner surface of the tube is modeled as an “elastic membrane” which is described by the so-called surface elasticity. A power-series solution is particularly developed for the lowest order of wave propagation. The dispersion diagram of the lowest-order wave is numerically presented with the surface (clogging) effect.


Torsional wave Wave propagation Surface effect Micro-tubes with clogging Elastic membrane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.E. Gurtin, A.I. Murdoch, Surface stress in solids, Int. J. Solids Struct. 14 (6) (1978) 431–440, doi:10.1016/0020-7683(78)90008-2.CrossRefGoogle Scholar
  2. 2.
    J.O. Kim, Torsional wave propagation in a circular cylinder with periodically corrugated outer surface, J. Vib. Acoust. 121 (4) (1999) 501–505, doi:10.1115/1.2894009.CrossRefGoogle Scholar
  3. 3.
    Y. Sriphutkiat, Y.F. Zhou, Particle accumulation in microchannel and its reduction by surface acoustic wave (SAW), in: Proceedings of the Second International Conference on Progress in Additive Manufacturing, 2016, pp. 282–287.Google Scholar
  4. 4.
    M.E. Gurtin, J. Weissmuïller, F. Larcheí, A general theory of curved deformable interfaces in solids at equilibrium, Philos. Mag. A 78 (5) (1998) 1093–1109. Scholar
  5. 5.
    D.W. Haines, P.C.Y. Lee, Axial symmetric torsional waves in circular composite cylinder, AMSE J. Appl. Mech. 11 (1971) 1041–1044, doi:10.1115/1.3408909.Google Scholar
  6. 6.
    J.M. Carcione, G. Seriani, Torsional waves in lossy cylinders, J. Acoust. Soc. Am. 103 (2) (1998) 760–766. Scholar
  7. 7.
    T. Shearer, J.D. Abrahams, W.J. Parnell, Torsional wave propagation in a pre-stressed hyperelastic annular circular cylinder, Q. J. Appl. Math. 66 (4) (2013) 465–487, doi:10.1093/qjmam/hbt014.MathSciNetCrossRefGoogle Scholar
  8. 8.
    S.D. Akbarov, T. Kepceler, M. Mert Egilmez, Torsional wave dispersion in a finitely pre-strained hollow sandwich circular cylinder, J. Sound Vib. 330 (18–19) (2011) 4519–4537, doi:10.1016/j.jsv.2011.04.009.CrossRefGoogle Scholar
  9. 9.
    J.R. Berger, P.A. Martin, S.J. McCaffery, Time-harmonic torsional waves in a composite cylinder with an imperfect interface, J. Acoust. Soc. Am. 107 (2000) 1161–1167. Scholar
  10. 10.
    L.M Xu, H. Fan, Torsional waves in nanowires with surface elasticity effect, Acta Mech. 227 (6) (2016) 1–8, doi:10.1007/s00707-016-1607-4.CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    T. Chen, M-S. Chiu, C-N. Weng, Derivation of the generalized Young–Laplace equation of curved interface in nanoscale solids, J. Appl. Phys. 100 (2006) 074308, doi:10.1063/1.2356094.CrossRefGoogle Scholar
  12. 12.
    W.Q. Chen, B. Wu, C.L. Zhang, Ch. Zhang, On wave propagation in anisotropic elastic cylinders at nanoscale surface elasticity and its effect, Acta Mech. 225 (2014) 2743–2760, doi:10.1007/s00707-014-1211-4.MathSciNetCrossRefGoogle Scholar
  13. 13.
    D.W. Haines, P.C.Y. Lee, Approximate theory of torsional wave propagation in elastic circular composite cylinders, J. Acoust. Soc. Am. 49 (1) (1971) 211. Scholar
  14. 14.
    J.S. Yang, Analysiss of Piezoelectric Devices, World Scientific, Singapore, 2006.CrossRefGoogle Scholar
  15. 15.
    H. Fan, L.M. Xu, Decay rates in nano tubes with consideration of surface elasticity, Mech. Res. Commun. 73 (2016) 113–116, doi:10.1016/j.mechrescom.2016.02.013.CrossRefGoogle Scholar
  16. 16.
    L.M. Xu, X. Wang, H. Fan, Anti-plane waves near an interface between two piezoelectric half-spaces, Mech. Res. Commun. 67 (2015) 8–12, doi:10.1016/j.mechrescom.2015.04.006.CrossRefGoogle Scholar
  17. 17.
    X. Wang, H. Fan, Piezoelectric screw dislocation in a bimaterial with surface piezoelectricity, Acta Mech. 226 (10) (2015) 3317–3331, doi:10.1007/s00707-015-1382-7.MathSciNetCrossRefGoogle Scholar
  18. 18.
    N.G. Stephen, M.Z. Wang, Decay rates for the hollow circular cylinder, J. Appl. Mech. 59 (4) (1992) 747–753, doi:10.1115/1.2894038.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.School of Astronautics and AeronauticsUniversity of Electronic Science and TechnologyChengduChina
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations