Acta Mechanica Solida Sinica

, Volume 30, Issue 3, pp 234–240 | Cite as

Interlayer shear of nanomaterials: Graphene—graphene, boron nitride—boron nitride and graphene—boron nitride

  • Yinfeng LiEmail author
  • Weiwei Zhang
  • Bill Guo
  • Dibakar Datta


In this paper, the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations. The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene, while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene. The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts. For graphene/graphene and h-BN/h-BN, interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions. Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.


Friction Interlayer shear Graphene Hexongal boron nitride Molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Lee, Q. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick, et al., Frictional characteristics of atomically thin sheets, Science 328 (5974) (2010) 76–80.CrossRefGoogle Scholar
  2. 2.
    J.M. Van Ruitenbeek, A.I. Yanson, G.R. Bollinger, H.E. van den Brom, N. Agrait, Nature 395 (6704) (1998) 783–785.Google Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666–669.CrossRefGoogle Scholar
  4. 4.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature 446 (7131) (2007) 60–63.CrossRefGoogle Scholar
  5. 5.
    A. Mattausch, O. Pankratov, Ab initio study of graphene on SiC, Phys. Rev. Lett. 99 (7) (2007).Google Scholar
  6. 6.
    K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8 (3) (2009) 235–242.CrossRefGoogle Scholar
  7. 7.
    K. Nomura, A.H. MacDonald, Quantum transport of massless Dirac fermions, Phys. Rev. Lett. 98 (7) (2007).Google Scholar
  8. 8.
    M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic structure of graphene on SiO2, Nano Lett. 7 (6) (2007) 1643–1648.CrossRefGoogle Scholar
  9. 9.
    J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3 (4) (2008) 206–209.CrossRefGoogle Scholar
  10. 10.
    S. Cho, M.S. Fuhrer, Charge transport and inhomogeneity near the minimum conductivity point in graphene, Phys. Rev. B 77 (8) (2008) 081402.CrossRefGoogle Scholar
  11. 11.
    Y. Ding, Y. Wang, J. Ni, Electronic properties of graphene nanoribbons embedded in boron nitride sheets, Appl. Phys. Lett. 95 (12) (2009) 123105.Google Scholar
  12. 12.
    O.V. Yazyev, A. Pasquarello, Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride, Phys. Rev. B 80 (3) (2009) 035408.CrossRefGoogle Scholar
  13. 13.
    J.-W. Jiang, J.-S. Wang, B.-S. Wang, Minimum thermal conductance in graphene and boron nitride superlattice, Appl. Phys. Lett. 99 (4) (2011) 043109.CrossRefGoogle Scholar
  14. 14.
    N. Jain, T. Bansal, C.A. Durcan, Y. Xu, B. Yu, Monolayer graphene/hexagonal boron nitride heterostructure, Carbon 54 (2013) 396–402.CrossRefGoogle Scholar
  15. 15.
    T. Jiang, R. Huang, Y. Zhu, Interfacial sliding and buckling of monolayer graphene on a stretchable substrate, Adv. Funct. Mater. 24 (3) (2014) 396–402.CrossRefGoogle Scholar
  16. 16.
    D.C. Elias, R.R. Nair, T.M. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, et al., Control of graphene’s properties by reversible hydrogenation: evidence for graphane, Science 323 (5914) (2009) 610–613.CrossRefGoogle Scholar
  17. 17.
    S. Kwon, J.H. Ko, K.J. Jeon, Y.H. Kim, J.Y. Park, Enhanced nanoscale friction on fluorinated graphene, Nano Lett. 12 (12) (2012) 6043–6048.CrossRefGoogle Scholar
  18. 18.
    Y. Guo, W. Guo, C. Chen, Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study, Phy. Rev. B 76 (15) (2007) 155429.CrossRefGoogle Scholar
  19. 19.
    H. Zhang, Z. Guo, H. Gao, T. Chang, Stiffness-dependent interlayer friction of graphene, Carbon 94 (2015) 60–66.CrossRefGoogle Scholar
  20. 20.
    W. Ouyang, M. Ma, Q. Zheng, M. Urbakh, Frictional properties of nanojunctions including atomically thin sheets, Nano Lett. 16 (3) (2016) 1878–1883.CrossRefGoogle Scholar
  21. 21.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1–19.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Yinfeng Li
    • 1
    • 4
    Email author
  • Weiwei Zhang
    • 2
  • Bill Guo
    • 2
  • Dibakar Datta
    • 3
  1. 1.Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration)Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Mechanical and Industrial Engineering, Newark College of EngineeringNew Jersey Institute of TechnologyNewarkUSA
  4. 4.Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations