Acta Mechanica Solida Sinica

, Volume 30, Issue 3, pp 224–226 | Cite as

Modeling nanoscale ice adhesion

  • Senbo Xiao
  • Jianying He
  • Zhiliang Zhang


Anti-icing is crucial for numerous instruments and devices in low temperature circumstance. One of the approaches in anti-icing is to reduce ice adhesion strength, seeking spontaneous de-icing processes by natural forces of gravity or by winds. In order to enable tailored surface icephobicity design, research requires a good theoretical understanding of the atomistic interacting mechanisms between water/ice molecules and their adhering substrates. Herein, this work focuses on using atomistic modeling and molecular dynamics simulation to build a nanosized ice-cube adhering onto silicon surface, with different contact modes of solid—solid and solid—liquid—solid patterns. This study provides atomistic models for probing nanoscale ice adhesion mechanics and theoretical platforms for explaining experimental results.


Anti-icing Atomistic modeling Molecular dynamics Adhesion Interface mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Kreder, J. Alvarenga, P. Kim, J. Aizenberg, Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1 (2016) 15003.CrossRefGoogle Scholar
  2. 2.
    J. Lv, Y. Song, L. Jiang, J. Wang, Bio-inspired strategies for anti-icing, ACS Nano 8 (2014) 3152–3169.CrossRefGoogle Scholar
  3. 3.
    L. Wilen, J. Wettlaufer, M. Elbaum, M. Schick, Dispersion-force effects in interfacial premelting of ice, Phys. Rev. B 52 (1995) 12426.CrossRefGoogle Scholar
  4. 4.
    I.A. Ryzhkin, V.F. Petrenko, Physical mechanisms responsible for ice adhesion, J. Phys. Chem. B 101 (1997) 6267–6270.CrossRefGoogle Scholar
  5. 5.
    J. Chen, Z. Luo, Q. Fan, J. Lv, J. Wang, Anti-ice coating inspired by ice skating, Small 10 (2014) 4693–4699.CrossRefGoogle Scholar
  6. 6.
    T.-S. Wong, et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature 477 (2011) 443–447.CrossRefGoogle Scholar
  7. 7.
    S. Xiao, J. He, Z. Zhang, Nanoscale deicing by molecular dynamics simulation, Nanoscale 8 (2016) 14625–14632.CrossRefGoogle Scholar
  8. 8.
    H.J. Berendsen, J.P. Postma, W.F. van Gunsteren, J. Hermans, Intermolecular Forces, Springer, 1981, pp. 331–342.Google Scholar
  9. 9.
    H. Berendsen, J. Grigera, T. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269–6271.CrossRefGoogle Scholar
  10. 10.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983) 926–935.CrossRefGoogle Scholar
  11. 11.
    J. Abascal, E. Sanz, R. Garcia Fernandez, C. Vega, A potential model for the study of ices and amorphous water: TIP4P/Ice, J. Chem. Phys. 122 (2005) 234511.CrossRefGoogle Scholar
  12. 12.
    C. Vega, E. Sanz, J. Abascal, The melting temperature of the most common models of water, J. Chem. Phys. 122 (2005) 114507.CrossRefGoogle Scholar
  13. 13.
    W.L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, J. Am. Chem. Soc. 110 (1988) 1657–1666.CrossRefGoogle Scholar
  14. 14.
    C. Lobban, J. Finney, W. Kuhs, The structure of a new phase of ice, Nature 391 (1998) 268–270.CrossRefGoogle Scholar
  15. 15.
    M.J. Abraham, et al., GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19–25.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.NTNU Nanomechanical Lab, Department of Structural EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations