Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 3, pp 227–233 | Cite as

An empirical description for the hinge-like mechanism in single-layer black phosphorus: The angle—angle cross interaction

  • Jin-Wu Jiang
Article

Abstract

The single-layer black phosphorus is characterized by its puckered configuration that possesses the hinge-like behavior, which leads to the highly anisotropic in-plane Poisson’s ratios and the negative out-of-plane Poisson’s ratio. We demonstrate that the hinge-like mechanism can be described by the angle—angle cross interaction, which, combined with the bond stretching and angle bending interactions, is able to provide a good description for the mechanical properties of single-layer black phosphorus. We also propose a nonlinear angle—angle cross interaction, which follows the form of Stillinger—Weber potential and can be advantageous for molecular dynamics simulations of single-layer black phosphorus under large deformation.

Keywords

Black phosphorus Stillinger—Weber potential Hinge-like mechanism Molecular dynamics simulation Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-W. Jiang, H.S. Park, Mechanical properties of single-layer black phosphorus, J. Phys. D: Appl. Phys. 47 (2014) 385304.CrossRefGoogle Scholar
  2. 2.
    J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5 (2014) 4475.Google Scholar
  3. 3.
    G. Qin, Z. Qin, S.-Y. Yue, H.-J. Cui, Q.-R. Zheng, Q.-B. Yan, G. Su, Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance, Sci. Rep. 4 (2014) 6946.CrossRefGoogle Scholar
  4. 4.
    Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Appl. Phys. Lett. 104 (2014) 251915.CrossRefGoogle Scholar
  5. 5.
    J.-W. Jiang, H.S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun. 5 (2014) 4727.Google Scholar
  6. 6.
    M. Elahi, K. Khaliji, S.M. Tabatabaei, M. Pourfath, R. Asgari, Modulation of electronic and mechanical properties of phosphorene through strain, Phys. Rev. B 91 (2014) 115412.CrossRefGoogle Scholar
  7. 7.
    Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu, P.D. Ye, Auxetic black phosphorus: a 2d material with negative Poisson’s ratio, Nano Lett. 16 (2016) 6701–6708.CrossRefGoogle Scholar
  8. 8.
    F. Scarpa, Auxetic materials for bioprostheses, IEEE Signal Process. Mag. 25 (2008) 126–128.CrossRefGoogle Scholar
  9. 9.
    J.B. Choi, R.S. Lakes, Design of a fastener based on negative Poisson’s ratio foam, Cell Polym. 10 (1991) 205–212.Google Scholar
  10. 10.
    Y. Sun, N. Pugno, Hierarchical fibers with a negative Poisson’s ratio for tougher composites, Materials 6 (2013) 699–712.CrossRefGoogle Scholar
  11. 11.
    Y.J. Park, J.K. Kim, The effect of negative Poisson’s ratio polyurethane scaffolds for articular cartilage tissue engineering applications, Adv. Mater. Sci. Eng. 2013 (2013) 853289.Google Scholar
  12. 12.
    Q. Liu, Literature Review: Material with Negative Poisson’s Ratios and Potential Applications to Aerospace and Defence, DSTO Defence Science and Technology Organisation, Australia, 2006.Google Scholar
  13. 13.
    C. Kaneta, H. Katayama-Yoshida, A. Morita, Lattice dynamics of black phosphorus, Solid State Commun. 44 (1982) 613–617.CrossRefGoogle Scholar
  14. 14.
    J.-W. Jiang, Parameterization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus, Nanotechnology 26 (2015) 315706.CrossRefGoogle Scholar
  15. 15.
    D. Midtvedt, A. Croy, Comment on „parameterization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus’, Nanotechnology 27 (2016) 238001.CrossRefGoogle Scholar
  16. 16.
    Y. Takao, Electronic structure of black phosphorus: tight binding approach, Physica (Amsterdam) 105B (1981) 580.Google Scholar
  17. 17.
    J.D. Gale, Gulp: a computer program for the symmetry-adapted simulation of solids, J. Chem. Soc. Faraday Trans. 93 (1997) 629. Code available from https://projects.ivec.org/gulp/.CrossRefGoogle Scholar
  18. 18.
    LAMMPS, http://www.cs.sandia.gov/~sjplimp/lammps.html.Google Scholar
  19. 19.
    S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511.CrossRefGoogle Scholar
  20. 20.
    W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31 (1985) 1695.CrossRefGoogle Scholar
  21. 21.
    W. Ji. Private communication, 2015.Google Scholar
  22. 22.
    N. Karasawa, S. Dasgupta, W.A Goddard III, Mechanical properties and force field parameters for polyethylene crystal, J. Phys. Chem. 95 (1991) 2261.CrossRefGoogle Scholar
  23. 23.
    N. Karasawa, W.A Goddard III, Force fields, structures, and properties of poly(viny1idene fluoride) crystals, Macromolcules 25 (1992) 7268–7281.CrossRefGoogle Scholar
  24. 24.
    J.A. Wendel, W.A. Goddard III, The Hessian biased force field for silicon nitride ceramics: predictions of thermodynamic and mechanical properties for α- and β-Si3N4, J. Comput. Phys. 97 (1992) 5048.Google Scholar
  25. 25.
    R.J. Meier, J.R. Maple, M.-J. Hwang, A.T. Hagler, Molecular modeling urea- and melamine-formaldehyde resins. 1. A force field for urea and melamine, J. Phys. Chem. 99 (1995) 5445–5456.CrossRefGoogle Scholar
  26. 26.
    B. Ma, R. Nussinov, Stabilities and conformations of Alzheimer’s p-amyloid peptide oligomers: sequence effects, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 14126–14131.CrossRefGoogle Scholar
  27. 27.
    K. Kuwata, T. Matumoto, H. Cheng, K. Nagayama, T.L. James, H. Roder, NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126, Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 14790–14795.CrossRefGoogle Scholar
  28. 28.
    Z. Zhu, D. Tomanek, Semiconducting layered blue phosphorus: a computational study, Phys. Rev. Lett. 112 (2014) 176802.CrossRefGoogle Scholar
  29. 29.
    L. Kou, Y. Ma, S.C. Smith, C. Chen, Anisotropic ripple deformation in phosphorene, J. Phys. Chem. Lett. 6 (2015) 1509–1513.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy EngineeringShanghai UniversityShanghaiChina

Personalised recommendations