Skip to main content
Log in

Frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The panel-type structures used in aerospace engineering can be subjected to severe high-frequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites (CMCs) under acoustic loadings. Firstly, the high-frequency random responses from the broadband random excitation will result in more stress cycles in a definite period of time. The probability density distributions of stress amplitudes will be different in different frequency band-widths, though the peak stress estimations are identical. Secondly, the fatigue properties of CMCs can be highly frequency-dependent. The fatigue evaluation method for the random vibration case is adopted to evaluate the fatigue damage of a representative stiffened panel structure. The frequency effect through S-N curves on random fatigue damage is numerically verified. Finally, a parameter is demonstrated to characterize the mean vibration frequency of a random process, and hence this parameter can further be considered as a reasonable loading frequency in the fatigue tests of CMCs to obtain more reliable S-N curves. Therefore, the influence of vibration frequency can be incorporated in the random fatigue model from the two perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.F. Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites, Adv. Eng. Mater. 4 (12) (2002) 903–912.

    Article  Google Scholar 

  2. R.R. Naslain, SiC-matrix composites: nonbrittle ceramics for thermo-structural application, Int. J. Appl. Ceramic Technol. 2 (2) (2005) 75–84.

    Article  Google Scholar 

  3. T. Pichon, R. Barreteau, P. Soyris, A. Foucault, J.M. Parenteau, Y. Prel, et al., CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests, Acta Astronautica. 65 (1) (2009) 165–176.

    Article  Google Scholar 

  4. R.G. White, P.R. Cunningham, A review of analytical methods for aircraft structures subjected to high-intensity random acoustic loads, Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 218 (3) (2004) 231–242.

    Article  Google Scholar 

  5. J. Nilsson, R.-Z. Szász, P.-E. Austrell, E.J. Gutmark, Load and Response Prediction Using Numerical Methods in Acoustic Fatigue, J. Aircraft. 53 (2) (2016) 406–415.

    Article  Google Scholar 

  6. B. Arguillat, D. Ricot, C. Bailly, G. Robert, Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations, J. Acoust. Soc. Am. 128 (4) (2010) 1647–1655. PubMed PMID: 20968337.

    Article  Google Scholar 

  7. Y.D. Sha, L. Zhu, X.B. Jie, X.C. Luan, F.F. Feng, Nonlinear random response and fatigue life estimation of curved panels to non-uniform temperature field and acoustic loadings, J. Vib. Control. 22 (3) (2014) 896–911.

    Article  MathSciNet  Google Scholar 

  8. Y. Zhou, S. Wu, Z. Tan, Q. Fei, Temperature-dependence of acoustic fatigue life for thermal protection structures, Theor. Appl. Mech. Lett. 4 (2) (2014) 021005.

    Article  Google Scholar 

  9. L. Liu, Q. Guo, T. He, Thermal-acoustic fatigue of a multilayer thermal protection system in combined extreme environments, Adv. Mech. Eng. 6 (2015) 176891.

    Article  Google Scholar 

  10. A. Vassilopoulos, Fatigue Life Prediction of Composites and Composite Structures, New Delhi: Woodhead Publishing Limited, Oxford, Cambridge, 2010.

    Book  Google Scholar 

  11. J.W. Holmes, S.F. Shuler, Temperature rise during fatigue of fibre-reinforced ceramics, J. Mater. Sci. Lett. 9 (11) (1990) 1290–1291.

    Article  Google Scholar 

  12. S.F. Shuler, J.W. Holmes, X. Wu, D. Roach, Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite, J. Am. Ceramic Soc. 76 (9) (1993) 2327–2336.

    Article  Google Scholar 

  13. J.W. Holmes, X. Wu, B.F. Sorensen, Frequency dependence of fatigue life and internal heating of a fiber-reinforced/ceramic-matrix composite, J. Am. Ceramic Soc. 77 (12) (1994) 3284–3286.

    Article  Google Scholar 

  14. J.M. Staehler, S. Mall, L.P. Zawada, Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature, Compos. Sci. Technol. 63 (15) (2003) 2121–2131.

    Article  Google Scholar 

  15. S. Mall, J.M. Engesser, Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature, Compos. Sci. Technol. 66 (7–8) (2006) 863–874.

    Article  Google Scholar 

  16. M.B. Ruggles-Wrenn, G. Hetrick, S.S. Baek, Effects of frequency and environment on fatigue behavior of an oxide–oxide ceramic composite at 1200°C, Int. J. Fatigue 30 (3) (2008) 502–516.

    Article  Google Scholar 

  17. M.B. Ruggles-Wrenn, D.T. Christensen, A.L. Chamberlain, J.E. Lane, T.S. Cook, Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200°C, Compos. Sci. Technol. 71 (2) (2011) 190–196.

    Article  Google Scholar 

  18. J.J. Hollkamp, R.W. Gordon, S.M. Spottswood, Nonlinear modal models for sonic fatigue response prediction: a comparison of methods, J. Sound Vib. 284 (3–5) (2005) 1145–1163.

    Article  Google Scholar 

  19. M. Behnke, A. Sharma, A. Przekop, S. Rizzi, Thermal-acoustic analysis of a metallic integrated thermal protection system structure, in: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Orlando, Florida: American Institute of Aeronautics and Astronautics, 2010.

    Book  Google Scholar 

  20. W. Li, Y. Li, Vibration and sound radiation of an asymmetric laminated plate in thermal environments, Acta Mechanica Solida Sinica. 28 (1) (2015) 11–22.

    Article  Google Scholar 

  21. Q. Geng, D. Wang, Y. Liu, Y. Li, Experimental and numerical investigations on dynamic and acoustic responses of a thermal post-buckled plate, Sci. China Technol. Sciences. 58 (8) (2015) 1414–1424.

    Article  Google Scholar 

  22. M. Aykan, M. Çelik, Vibration fatigue analysis and multi-axial effect in testing of aerospace structures, Mech. Syst. Signal Process. 23 (3) (2009) 897–907.

    Article  Google Scholar 

  23. Y. Zhou, Q. Fei, S. Wu, Utilization of modal stress approach in random-vibration fatigue evaluation, in: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016 Epub ahead of print 26 Oct 2016.

  24. S.-H. Han, D.-G. An, S.-J. Kwak, K.-W. Kang, Vibration fatigue analysis for multi-point spot-welded joints based on frequency response changes due to fatigue damage accumulation, Int. J. Fatigue. 48 (2013) 170–177.

    Article  Google Scholar 

  25. M. Mršnik, J. Slavič, M. Boltežar, Frequency-domain methods for a vibration-fatigue-life estimation – Application to real data, Int. J. Fatigue. 47 (2013) 8–17.

    Article  Google Scholar 

  26. Y. Wang, Spectral fatigue analysis of a ship structural detail – A practical case study, Int. J. Fatigue. 32 (2) (2010) 310–317.

    Article  Google Scholar 

  27. D. Benasciutti, R. Tovo, Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes, Probabilistic Eng. Mech. 21 (4) (2006) 287–299.

    Article  Google Scholar 

  28. Dirlik T. Application of Computers in Fatigue Analysis: University of Warwick; 1985.

  29. P.R. Cunningham, R.G. White, Dynamic response of doubly curved honeycomb sandwich panels to random acoustic excitation. Part 1: Experimental study, J. Sound Vib. 264 (3) (2003) 579–603.

    Article  Google Scholar 

  30. DoD. U.S.A. Military standard: environmental test methods and engineering guidelines. Acoustic noise. Ohio 1983.

  31. Y.L. Lee, J. Pan, R. Hathaway, B. Mark, Fatigue Testing And Analysis: Theory And Practice, Elsevier Butterworth-Heinemann, Burlington, MA, 2005.

    Google Scholar 

  32. I.F. Blake, W.C. Lindsey, Level-crossing problems for random processes, IEEE Trans. Inf. Theory. 19 (3) (1973) 295–315.

    Article  MathSciNet  Google Scholar 

  33. J.J. Wijker, Random Vibrations in Spacecraft Structures design: Theory and Applications, in: G. GML (Ed.), Springer Dordrecht Heidelberg London New York: Springer Science & Business Media, 2009.

    Google Scholar 

  34. M. Shinozuka, G. Deodatis, Simulation of stochastic processes by spectral representation, Appl. Mech. Rev. 44 (4) (1991) 191–204.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Fei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Hang, X., Wu, S. et al. Frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites. Acta Mech. Solida Sin. 30, 165–173 (2017). https://doi.org/10.1016/j.camss.2017.03.010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.03.010

Keywords

Navigation