Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 2, pp 137–144 | Cite as

Shear response of β-SiC bulk dependent on temperature and strain rate

  • Liang Wang
  • Qunfeng Liu
  • Wenshan Yu
  • Shengping Shen
Article
  • 2 Downloads

Abstract

The shear responses of β-SiC are investigated using molecular dynamics simulation with the Tersoff interatomic potential. Results show a clear decreasing trend in critical stress, fracture strain and shear modulus as temperature increases. Above a critical temperature, β-SiC bulk just fractures after the elastic deformation. However, below the critical temperature, an interesting pattern in β-SiC bulk emerges due to the elongation of Si-C bonds before fracture. Additionally, the shear deformation of β-SiC at room temperature is found to be dependent on the strain rate. This study may shed light on the deformation mechanism dependent on temperature and strain rate.

Keywords

β-SiC Fracture Temperature effect Strain rate Shear deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Zhao, J.H. Westbrook, Ultrahigh-temperature materials for jet engines, MRS Bull. 28 (09) (2003) 622–630.CrossRefGoogle Scholar
  2. 2.
    M. Singh, Joining of sintered silicon carbide ceramics for high-temperature applications, J. Mater. Sci. Lett. 17 (6) (1998) 459–461.CrossRefGoogle Scholar
  3. 3.
    W. Aiguo, H.J. Rack, Abrasive wear of silicon carbide particulate— and whisker-reinforced 7091 aluminum matrix composites, Wear 146 (2) (1991) 337–348.CrossRefGoogle Scholar
  4. 4.
    D.L. Orphal, R.R. Franzen, Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s, Int. J. Impact Eng. 19 (1) (1997) 1–13.CrossRefGoogle Scholar
  5. 5.
    T.J. Holmquist, G.R. Johnson, Response of silicon carbide to high velocity impact, J. Appl. Phys. 91 (9) (2002) 5858–5866.CrossRefGoogle Scholar
  6. 6.
    Y. Umeno, Y. Kinoshita, T. Kitamura, Ab initio DFT simulation of ideal shear deformation of SiC polytypes, Model. Simul. Mater. Sci. Eng. 15 (2) (2007) 27–37.CrossRefGoogle Scholar
  7. 7.
    P.S. Branicio, Atomistic mechanisms in silicon carbide nanostructures, J. Comput. Theor. Nanosci. 9 (11) (2012) 1870–1880.CrossRefGoogle Scholar
  8. 8.
    H. Kikuchi, R.K. Kalia, A. Nakano, P. Vashishta, P.S. Branicio, F. Shimojo, Brittle dynamic fracture of crystalline cubic silicon carbide (3C-SiC) via molecular dynamics simulation, J. Appl. Phys. 98 (10) (2005) 103524.CrossRefGoogle Scholar
  9. 9.
    K. Xue, L.S. Niu, Understanding the changes in mechanical properties due to the crystalline-to-amorphization transition in SiC, J. Appl. Phys. 106 (8) (2009) 083505.CrossRefGoogle Scholar
  10. 10.
    Z.G. Wang, X.T. Zu, Z.J. Li, F. Gao, Amorphous layer coating induced brittle to ductile transition in single crystalline SiC nanowires: an atomistic simulation, J. Phys. D: Appl. Phys. 41 (15) (2008) 155419.CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, X. Han, K. Zheng, Z. Zhang, X. Zhang, J. Fu, Y. Ji, Y. Hao, X. Guo, Z.L. Wang, Direct observation of super-plasticity of Beta-SiC nanowires at low temperature, Adv. Funct. Mater. 17 (17) (2007) 3435–3440.CrossRefGoogle Scholar
  12. 12.
    X.D. Han, Z. Zhang, Z.L. Wang, Experimental nanomechanics of one-dimensional nanomaterials by in situ microscopy, Nano 2 (05) (2007) 249–271.CrossRefGoogle Scholar
  13. 13.
    X.D. Han, Y.F. Zhang, K. Zheng, X.N. Zhang, Z. Zhang, Y.J. Hao, X.Y. Guo, J. Yuan, Z.L. Wang, Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism, Nano Lett. 7 (2) (2007) 452–457.CrossRefGoogle Scholar
  14. 14.
    X.D. Han, Y.F. Zhang, X.Q. Liu, Z. Zhang, Y.J. Hao, X.Y. Guo, Lattice bending, disordering, and amorphization induced plastic deformation in a SiC nanowire, J. Appl. Phys. 98 (12) (2005) 124307.CrossRefGoogle Scholar
  15. 15.
    J.Y. Zhang, Z.D. Sha, P.S. Branicio, Y.W. Zhang, V. Sorkin, Q.X. Pei, D.J. Srolovitz, Superplastic nanocrystalline ceramics at room temperature and high strain rates, Scripta Materialia 69 (7) (2013) 525–528.CrossRefGoogle Scholar
  16. 16.
    J. Wang, C. Lu, Q. Wang, P. Xiao, F.J. Ke, Y.L. Bai, Y.G. Shen, X.Z. Liao, H.J. Gao, Understanding large plastic deformation of SiC nanowires at room temperature, EPL (Europhys. Lett.) 95 (6) (2011) 63003.CrossRefGoogle Scholar
  17. 17.
    Szlufarska, I., Nakano, A. and Vashishta, P., A Crossover in the Mechanical Response of Nanocrystalline Ceramics. Science, 2005, 309(5736): 911.CrossRefGoogle Scholar
  18. 18.
    Vetter, W.M. and Dudley, M., Characterization of defects in 3C-silicon carbide crystals. J. Crystal Growth, 2004, 260(1–2): 201–208.CrossRefGoogle Scholar
  19. 19.
    Blumenau, A.T., Fall, C.J., Jones, R., Heggie, M.I., Briddon, P.R., Frauenheim, T. and Öberg, S., Straight and kinked 90° partial dislocations in diamond and 3C-SiC. J. Phys.: Condensed Matter, 2002, 14(48): 12741.Google Scholar
  20. 20.
    Medyanik, S.N. and Liu, W. K., Multiple time scale method for atomistic simulations. Comput. Mech., 2008, 42(4): 569–577.zbMATHCrossRefGoogle Scholar
  21. 21.
    Waisman, H. and Fish, J., A space–time multilevel method for molecular dynamics simulations. Comput. Meth. Appl. Mech. Eng., 2006, 195(44-47): 6542–6559.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tsuzuki, H., Rino, J.P. and Branicio, P.S., Dynamic behaviour of silicon carbide nanowires under high and extreme strain rates: a molecular dynamics study. J. Phys. D: Appl. Phys., 2011, 44(5): 055405.CrossRefGoogle Scholar
  23. 23.
    Wang, W.- X., Niu, L.-S., Zhang, Y.- Y. and Lin, E.-Q., Tensile mechanical behaviors of cubic silicon carbide thin films. Comput. Mater. Sci., 2012, 62: 195–202.CrossRefGoogle Scholar
  24. 24.
    Kim, T. Y., Han, S.S. and Lee, H.M., Nanomechanical behavior of β-sic nanowire in tension: molecular dynamics simulations. Mater. Trans., 2004, 45(5): 1442–1449.CrossRefGoogle Scholar
  25. 25.
    Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1): 1–19.zbMATHCrossRefGoogle Scholar
  26. 26.
    Tersoff, J., Chemical order in amorphous silicon carbide. Phys. Rev. B, 1994, 49(23): 16349–16352.CrossRefGoogle Scholar
  27. 27.
    Porter, L.J., Li, J. and Yip, S., Atomistic modeling of finite-temperature properties of β-SiC. I. Lattice vibrations, heat capacity, and thermal expansion. J. Nucl. Mater., 1997, 246(1): 53–59.CrossRefGoogle Scholar
  28. 28.
    Tang, M.J. and Yip, S., Atomistic simulation of thermomechanical properties of β-SiC. Phys. Rev. B, 1995, 52(21): 15150–15159.CrossRefGoogle Scholar
  29. 29.
    Mura, D., Colombo, L., Bertoncini, R. and Mula, G., Structure and chemical order of bulk Si1-xCx amorphous alloys. Phys. Rev. B, 1998, 58(16): 10357.CrossRefGoogle Scholar
  30. 30.
    Makeev, M., Srivastava, D. and Menon, M., Silicon carbide nanowires under external loads: An atomistic simulation study. Phys. Rev. B, 2006, 74(16): 165303.CrossRefGoogle Scholar
  31. 31.
    Wang, Z.G., Zu, X.T., Gao, F. and Weber, W., Atomistic simulations of the mechanical properties of silicon carbide nanowires. Phys. Rev. B, 2008, 77(22): 224113.CrossRefGoogle Scholar
  32. 32.
    Mo, Y.F., and Szlufarska, I., Simultaneous enhancement of toughness, ductility, and strength of nanocrystalline ceramics at high strain-rates. Appl. Phys. Lett., 2007, 90(18): 181926.CrossRefGoogle Scholar
  33. 33.
    Szlufarska, I., Kalia, R.K., Nakano, A. and Vashishta, P., Atomistic processes during nanoindentation of amorphous silicon carbide. Appl. Phys. Lett., 2005, 86(2): 021915.CrossRefGoogle Scholar
  34. 34.
    Mattoni, A., Colombo, L. and Cleri, F., Atomic scale origin of crack resistance in brittle fracture. Phys. Rev. Lett., 2005, 95(11): 115501.CrossRefGoogle Scholar
  35. 35.
    Li, Z. and Bradt, R.C., Thermal expansion of the cubic (3C) polytype of SiC. J. Mater. Sci., 1986, 21(12): 4366–4368.CrossRefGoogle Scholar
  36. 36.
    Ivashchenko, V., Turchi, P. and Shevchenko, V., Simulations of the mechanical properties of crystalline, nanocrystalline, and amorphous SiC and Si. Phys. Rev. B, 2007, 75(8): 085209.CrossRefGoogle Scholar
  37. 37.
    Yu, A.B. and Rashba, E.I., Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys., 1984, 17(33): 6039.CrossRefGoogle Scholar
  38. 38.
    Lee, D.H. and Joannopoulos, J.D., Simple scheme for deriving atomic force constants: Application to SiC. Phys. Rev. Lett., 1982, 48(26): 1846.CrossRefGoogle Scholar
  39. 39.
    Landolt, H.H. and Börnstein, R., Numerical data and functional relationships in science and technology, in: New Series Group III (Springer, Berlin), 1982, Vol. 17.Google Scholar
  40. 40.
    Feldman, D.W., Parker Jr, J.H., Choyke,W.J. and Patrick, L., Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev., 1968, 173(3): 787.CrossRefGoogle Scholar
  41. 41.
    Li, J., AtomEye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng., 2003, 11(2): 173.CrossRefGoogle Scholar
  42. 42.
    Wang, Y.M. and Ma, E., Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Materialia, 2004, 52(6): 1699–1709.CrossRefGoogle Scholar
  43. 43.
    Sun, Y.J., Huang, Y.H., Ma, F., Ma, D.Y., Hu, T. W. and Xu, K.W., Molecular dynamics simulation on double-elastic deformation of zigzag graphene nanoribbons at low temperature. Mater. Sci. Eng.: B, 2014, 180: 1–6.CrossRefGoogle Scholar
  44. 44.
    Liu, Q.F. and Shen, S.P., On the large-strain plasticity of silicon nanowires: Effects of axial orientation and surface. Int. J. Plast., 2012, 38: 146–158.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Lambrecht, W.R.L., Segall, B., Methfessel, M. and van Schilfgaarde, M., Calculated elastic constants and deformation potentials of cubic SiC. Phys. Rev. B, 1991, 44(8): 3685–3694.CrossRefGoogle Scholar
  46. 46.
    Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.-S., Kondo, S. and Petti, D.A., Handbook of SiC properties for fuel performance modeling. J. Nuclear Mater., 2007, 371(1-3): 329–377.CrossRefGoogle Scholar
  47. 47.
    Xi, J.Q., Zhang, P., He, C.H., Zang, H., Guo, D.X. and Li, T., The role of point defects in the swelling and elastic modulus of irradiated cubic silicon carbide. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interactions Mater. Atoms, 2015, 356–357: 62–68.CrossRefGoogle Scholar
  48. 48.
    Stevens, R., Dislocation movement and slip systems in β-SiC. J. Mater. Sci., 1970, 5(6): 474–477.CrossRefGoogle Scholar
  49. 49.
    Yang, Z., Huang, Y.H., Ma, F., Sun, Y.J., Xu, K.W. and Chu, P.K., Temperature and strain-rate effects on the deformation behaviors of nano-crystalline graphene sheets. Eur. Phys. J. B, 2015, 88(5): 135.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Liang Wang
    • 1
  • Qunfeng Liu
    • 1
  • Wenshan Yu
    • 1
  • Shengping Shen
    • 1
  1. 1.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of AerospaceXi’an Jiaotong UniversityXi’anChina

Personalised recommendations