Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 2, pp 113–122 | Cite as

Band structure properties of elastic waves propagating in the nanoscaled nearly periodic layered phononic crystals

  • A-Li Chen
  • Li-Zhi Tian
  • Yue-Sheng Wang
Article

Abstract

The localization factor is used to describe the band structures for P wave propagating normally in the nanoscaled nearly periodic layered phononic crystals. The localization factor is calculated by the transfer matrix method based on the nonlocal elastic continuum theory. Three kinds of nearly periodic arrangements are concerned, i.e., random disorder, quasi-periodicity and defects. The influences of randomly disordered degree of the sub-layer’s thickness and mass density, the arrangement of quasi-periodicity and the location of defect on the band structures and cut-off frequency are analyzed in detail.

Keywords

Elastic wave Nanoscale Nearly periodic Phononic crystal Band structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Kushwaha, P. Halevi, G. Martinez, L. Dodrzynski, B. Djafarirouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71 (1993) 2022–2025.CrossRefGoogle Scholar
  2. 2.
    P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958) 1492–1505.CrossRefGoogle Scholar
  3. 3.
    O. Barco, M. Ortuno, Localization length of nearly periodic layered metamaterials, Phys. Rev. A 86 (2) (2012) 023846.CrossRefGoogle Scholar
  4. 4.
    H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989) 223–315.CrossRefGoogle Scholar
  5. 5.
    H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (2000) 1–29.CrossRefGoogle Scholar
  6. 6.
    S.G. Du, D.M. Shi, H. Deng, Special effects and applications of nanostructured materials, Ziran Zazhi 22 (2) (2000) 101–106.Google Scholar
  7. 7.
    R. Ramprasad, N. Shi, Scalability of phononic crystal hetero structures, Appl. Phys. Lett. 87 (11) (2005) 111101.CrossRefGoogle Scholar
  8. 8.
    S.P. Hepplestone, G.P. Srivastava, Hypersonic modes in nanophononic semiconductors, Phys. Rev. Lett. 101 (10) (2008) 105502.CrossRefGoogle Scholar
  9. 9.
    G.L. Huang, C.T. Sun, Modeling heterostructures of nano-phononic crystals by continuum model with microstructures, Appl. Phys. Lett. 88 (2006) 261908.CrossRefGoogle Scholar
  10. 10.
    G.L. Huang, C.T. Sun, Continuum modelling of solids with micro/nanostructures, Philos. Mag. 87 (2007) 3689–3707.CrossRefGoogle Scholar
  11. 11.
    A.C. Eringen, Theory of micropolar plates, J. Appl. Math. Phys. 18 (1) (1967) 12–30.CrossRefGoogle Scholar
  12. 12.
    A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10 (1) (1972) 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M.E. Gurtin, J. Weissmüller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium, Philos. Mag. A 78 (5) (1998) 1093–1109.CrossRefGoogle Scholar
  14. 14.
    E.C. Aifantis, Strain gradient interpretation of size effects, Int. J. Fract. 95 (1–4) (1999) 299–314.CrossRefGoogle Scholar
  15. 15.
    F. Yang, A.C.M. Chong, D.C.C. Lam, P. Yong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct. 39 (10) (2002) 2731–2743.zbMATHCrossRefGoogle Scholar
  16. 16.
    Q. Wang, V.K. Varadan, Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Mater. Struct. 15 (2) (2006) 659–662.CrossRefGoogle Scholar
  17. 17.
    R. Ansari, A. Shahabodini, H. Rouhi, Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory, Compos. Struct. 95 (2013) 88–94.CrossRefGoogle Scholar
  18. 18.
    L.L. Ke, Y.S. Wang, Thermo-electric-mechanical vibration of the piezoelectric nanobeams based on the nonlocal theory, Compos. Struct. 77 (12) (2012) 2031–2042.Google Scholar
  19. 19.
    C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory, Compos. Struct. 106 (2013) 167–174.CrossRefGoogle Scholar
  20. 20.
    Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes, J. Mech. Phys. Solids 56 (12) (2008) 3475–3485.zbMATHCrossRefGoogle Scholar
  21. 21.
    H. Heireche, A. Tounsi, A. Benzair, M. Maachou, E.A.Adda Bedia, Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity, Phys. E: Low-Dimens. Syst. Nanostruct. 40 (8) (2008) 2791–2799.CrossRefGoogle Scholar
  22. 22.
    L.L. Zhang, J.X. Liu, X.Q. Fang, G.Q. Nie, Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates, Eur. J. Mech. A: Solids 46 (8) (2014) 22–29.CrossRefGoogle Scholar
  23. 23.
    A.L. Chen, Y.S. Wang, Size-effect on band structures of nanoscale phononic crystals, Phys. E: Low-Dimens. Syst. Nanostruct. 44 (1) (2011) 317–321.CrossRefGoogle Scholar
  24. 24.
    A.L. Chen, Y.S. Wang, L.L. Ke, Y.F. Guo, Z.D. Wang, Wave propagation in nanoscaled periodic layered structures, J. Comput. Theor. Nanosci. 10 (10) (2013) 2427–2437.CrossRefGoogle Scholar
  25. 25.
    A.L. Chen, D.J. Yan, Y.S. Wang, Ch. Zhang, Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures, Ultrasonics 65 (2016) 154–164.CrossRefGoogle Scholar
  26. 26.
    D.G.B. Edelen, N. Laws, On the thermodynamics of systems with nonlocality, Arch. Ration. Mech. Anal. 43 (1) (1971) 24–35.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci. 10 (3) (1972) 233–248.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    A.C. Eringen, Non-local polar field theories, Continuum Physics, Academic Press, New York, 1976, pp. 205–267.Google Scholar
  29. 29.
    D.G.B. Edelen, Nonlocal field theories, Continuum Physics, Academic Press, New York, 1976, pp. 75–204.Google Scholar
  30. 30.
    A.C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.zbMATHGoogle Scholar
  31. 31.
    Z.G. Liu, Research of Application of Nonlocal theory, Micropolar Theory on Problems of Elastic Waves and Fracture, Harbin Institute of Technology, 1992.Google Scholar
  32. 32.
    A.L. Chen, Y.S. Wang, Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals, Physica B 392 (2007) 369–378.CrossRefGoogle Scholar
  33. 33.
    A.L. Chen, Y.S. Wang, Y.F. Guo, Z.D. Wang, Band structures of Fihonacci phononic quasi crystals, Solid State Commun. 145 (2008) 103–108.CrossRefGoogle Scholar
  34. 34.
    W.C. Xie, A. Ibrahim, Buckling mode localization in rib-stiffened plates with misplaced stiffeners—a finite strip approach, Chaos Solitons Fractals 11 (2000) 1543–1558.zbMATHCrossRefGoogle Scholar
  35. 35.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16 (1985) 285–317.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    G.J. Kissel, Localization factor for multichannel disordered systems, Phys. Rev. A 44 (1991) 1008–1014.CrossRefGoogle Scholar
  37. 37.
    R. Merlin, K. Bajema, R. Clarke, F.Y. Juang, P.K. Bhattacharga, Quasiperiodic GaAs–AlAs heterostructures, Phys. Rev. Lett. 55 (1985) 1768–1770.CrossRefGoogle Scholar
  38. 38.
    A. Hu, S.S. Jiang, R.W. Peng, C.S. Zhang, D. Feng, Extended one-dimensional Fibonacci structures, Acta Phys. Sin. 41 (1) (1992) 62–68.Google Scholar
  39. 39.
    Y. Lu, R.W. Peng, Z. Wang, Z.H. Tang, X.Q. Huang, M. Wang, Y. Qiu, A. Hu, S.S. Jiang, D. Feng, Resonant transmission of light waves in dielectric heterostructures, J. Appl. Phys. 97 (2005) 123106.CrossRefGoogle Scholar
  40. 40.
    R.W. Peng, X.Q. Huang, F. Qiu, M. Wang, A. Hu, S.S. Jiang, Symmetry- induced perfect transmission of light waves in quasiperiodic dielectric multilayers, Appl. Phys. Lett. 80 (2002) 3063–3065.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Institute of Engineering MechanicsBeijing Jiaotong UniversityBeijingChina

Personalised recommendations