Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 2, pp 209–222 | Cite as

Nonlinear buckling and postbuckling behavior of cylindrical shear deformable nanoshells subjected to radial compression including surface free energy effects

  • S. Sahmani
  • M. M. Aghdam
  • M. Bahrami
Article

Abstract

The objective of the present investigation is to predict the nonlinear buckling and post-buckling characteristics of cylindrical shear deformable nanoshells with and without initial imperfection under hydrostatic pressure load in the presence of surface free energy effects. To this end, Gurtin-Murdoch elasticity theory is implemented into the first-order shear deformation shell theory to develop a size-dependent shell model which has an excellent capability to take surface free energy effects into account. A linear variation through the shell thickness is assumed for the normal stress component of the bulk to satisfy the equilibrium conditions on the surfaces of nanoshell. On the basis of variational approach and using von Karman-Donnell-type of kinematic nonlinearity, the non-classical governing differential equations are derived. Then a boundary layer theory of shell buckling is employed incorporating the effects of surface free energy in conjunction with nonlinear prebuckling deformations, large deflections in the postbuckling domain and initial geometric imperfection. Finally, an efficient solution methodology based on a two-stepped singular perturbation technique is put into use in order to obtain the critical buckling loads and postbuckling equilibrium paths corresponding to various geometric parameters. It is demonstrated that the surface free energy effects cause increases in both the critical buckling pressure and critical end-shortening of a nanoshell made of silicon.

Keywords

Nanoscale structures Size effect Nonlinear buckling Surface free energy Boundary layer theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy 97 (2003) 481–494.CrossRefGoogle Scholar
  2. 2.
    Y. Moser, M.A.M. Gijs, Miniaturized flexible temperature sensor, Journal of Microelectromechanics Systems 16 (2007) 1349–1354.CrossRefGoogle Scholar
  3. 3.
    K. Ahmad, W. Pan, Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites, Composites Science and Technology 69 (2009) 1016–1021.CrossRefGoogle Scholar
  4. 4.
    X. Yao, Q. Han, Torsional buckling and postbuckling equilibrium path of double-walled carbon nanotubes, Composites Science and Technology 68 (2008) 113–120.CrossRefGoogle Scholar
  5. 5.
    Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes, Journal of the Mechanics and Physics of Solids 56 (2008) 3475–3485.CrossRefGoogle Scholar
  6. 6.
    H.-S. Shen, C.L. Zhang, Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model, Composite Structures 92 (2010) 1073–1084.CrossRefGoogle Scholar
  7. 7.
    B. Wang, J. Zhao, Sh. Zhou, A micro scale Timoshenko beam model based on strain gradient elasticity theory, European Journal of Mechanics – A/Solids 29 (2010) 591–599.CrossRefGoogle Scholar
  8. 8.
    W. Xia, L. Wang, L. Yin, Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration, International Journal of Engineering Science 48 (2010) 2044–2053.MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A 375 (2010) 53–62.CrossRefGoogle Scholar
  10. 10.
    R. Ansari, S. Sahmani, H. Rouhi, Axial buckling analysis of single-walled carbon nanotubes in thermal environments via Rayleigh-Ritz technique, Computational Materials Science 50 (2011) 3050–3055.CrossRefGoogle Scholar
  11. 11.
    R. Ansari, R. Gholami, S. Sahmani, Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Composite Structures 94 (2011) 221–228.CrossRefGoogle Scholar
  12. 12.
    R. Ansari, S. Sahmani, Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models, Communications in Nonlinear Science and Numerical Simulation 17 (2012) 1965–1979.MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Ansari, S. Sahmani, Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations, Applied Mathematical Modelling 37 (2013) 7338–7351.MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Sahmani, R. Ansari, Size-dependent buckling analysis of functionally graded third-order shear deformable microbeams including thermal environment effect, Applied Mathematical Modelling 37 (2013) 9499–9515.MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Sahmani, R. Ansari, On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory, Composite Structures 95 (2013) 430–442.CrossRefGoogle Scholar
  16. 16.
    S. Sahmani, R. Ansari, R. Gholami, A. Darvizeh, Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory, Composites Part B: Engineering 51 (2013) 44–53.CrossRefGoogle Scholar
  17. 17.
    H.-S. Shen, Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environment, Mechanics Research Communications 54 (2013) 83–95.CrossRefGoogle Scholar
  18. 18.
    A.K. Lazopoulos, K.A. Lazopoulos, G. Palassopoulos, Nonlinear bending and buckling for strain gradient elastic beams, Applied Mathematical Modelling 38 (2014) 253–262.MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Sahmani, M. Bahrami, R. Ansari, Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory, Composite Structures 110 (2014) 219–230.CrossRefGoogle Scholar
  20. 20.
    B. Akgöz, Ö. Civalek, Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, International Journal of Engineering Science 85 (2014) 90–104.CrossRefGoogle Scholar
  21. 21.
    Y.S. Li, Z.Y. Cai, S.Y. Shi, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory, Composite Structures 111 (2014) 522–529.CrossRefGoogle Scholar
  22. 22.
    Y.-G. Wang, W.-H. Lin, N. Liu, Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory, Applied Mathematical Modelling 39 (2015) 117–127.MathSciNetCrossRefGoogle Scholar
  23. 23.
    H.L. Dai, L. Wang, A. Abdelkefi, Q. Ni, On nonlinear behavior and buckling of fluid-transporting nanotubes, International Journal of Engineering Science 87 (2015) 13–22.CrossRefGoogle Scholar
  24. 24.
    M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surface, Archive for Rational Mechanics and Analysis 57 (1975) 291–323.MathSciNetCrossRefGoogle Scholar
  25. 25.
    M.E. Gurtin, A.I. Murdoch, Surface stress in solids, International Journal of Solids and Structures 14 (1978) 431–440.CrossRefGoogle Scholar
  26. 26.
    M.E. Gurtin, J. Weissmuller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium, Philos Magnetic A 78 (1998) 1093–1109.CrossRefGoogle Scholar
  27. 27.
    J. Weissmuller, J.W. Cahn, Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids, Acta Materialla 45 (1997) 1899–1906.CrossRefGoogle Scholar
  28. 28.
    H.L. Duan, J. Wang, Z.P. Huang, B.L. Karihaloo, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, Journal of Mechanics and Physics of Solids 53 (2005) 1574–1596.MathSciNetCrossRefGoogle Scholar
  29. 29.
    P. Sharma, S. Ganti, N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Applied Physics Letters 82 (2003) 535.CrossRefGoogle Scholar
  30. 30.
    P. Sharma, L.T. Wheeler, , ASME Journal of Applied Mechanics 74 (2007) 447–454.MathSciNetCrossRefGoogle Scholar
  31. 31.
    C.W. Lim, L.H. He, Size-dependent nonlinear response of thin elastic films with nano-scale thickness, International Journal of Mechanical Sciences 46 (2004) 1715–1726.CrossRefGoogle Scholar
  32. 32.
    Z.R. Li, C.W. Lim, L.H. He, Stress concentration around a nano-scale spherical cavity in elastic media: effect of surface stress, European Journal of Mechanics – A/Solids 25 (2006) 260–270.CrossRefGoogle Scholar
  33. 33.
    L. Tian, R.K.N.D. Rajapakse, Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity, ASME Journal of Applied Mechanics 74 (2007) 568–574.CrossRefGoogle Scholar
  34. 34.
    L. Tian, R.K.N.D. Rajapakse, Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity, International Journal of Solids and Structures 44 (2007) 7988–8005.CrossRefGoogle Scholar
  35. 35.
    C.F. Lu, W.Q. Chen, C.W. Lim, Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies, Composites Science and Technology 69 (2009) 1124–1130.CrossRefGoogle Scholar
  36. 36.
    E. Gordeliy, S.G. Mogilevskaya, S.L. Crouch, Transient thermal stress in a medium with a circular cavity with surface effects, International Journal of Solids and Structures 46 (2009) 1834–1848.CrossRefGoogle Scholar
  37. 37.
    S.G. Mogilevskaya, S.L. Crouch, A.L. Grotta, H.K. Stolarski, The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites, Composites Science and Technology 70 (2010) 427–434.CrossRefGoogle Scholar
  38. 38.
    Y. Fu, J. Zhang, Y. Jiang, Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams, Physica E 42 (2010) 2268–2273.CrossRefGoogle Scholar
  39. 39.
    R. Ansari, S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, International Journal of Engineering Science 49 (2011) 1244–1255.CrossRefGoogle Scholar
  40. 40.
    R. Ansari, S. Sahmani, Surface stress effects on the free vibration behavior of nanoplates, International Journal of Engineering Science 49 (2011) 1204–1215.MathSciNetCrossRefGoogle Scholar
  41. 41.
    L. Wang, Surface effect on buckling configuration of nanobeams containing internal flowing fluid: A nonlinear analysis, Physica E 44 (2012) 808–812.CrossRefGoogle Scholar
  42. 42.
    R. Ansari, V. Mohammadi, M. Faghih Shojaei, R. Gholami, S. Sahmani, Postbuckling characteristics of nanobeams based on the surface elasticity theory, Composites Part B: Engineering 55 (2013) 240–246.CrossRefGoogle Scholar
  43. 43.
    R. Ansari, V. Mohammadi, M. Faghih Shojaei, R. Gholami, S. Sahmani, Postbuckling analysis of Timoshenko nanobeams including surface stress effect, International Journal of Engineering Science 75 (2014) 1–10.CrossRefGoogle Scholar
  44. 44.
    K. Kiani, Surface effect on free transverse vibrations and dynamic instability of current carrying nanowires in the presence of a longitudinal magnetic field, Physics Letters A 378 (2014) 1834–1840.MathSciNetCrossRefGoogle Scholar
  45. 45.
    F. Gao, Q. Cheng, J. Luo, Mechanics of nanowire buckling on elastomeric substrates with consideration of surface stress effects, Physica E 64 (2014) 72–77.CrossRefGoogle Scholar
  46. 46.
    R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, S. Sahmani, Surface stress effect on the pull-in instability of circular nanoplates, Acta Astronautica 102 (2014) 140–150.CrossRefGoogle Scholar
  47. 47.
    S. Sahmani, M. Bahrami, R. Ansari, Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams, Composite Structures 116 (2014) 552–561.CrossRefGoogle Scholar
  48. 48.
    S. Sahmani, M. Bahrami, R. Ansari, Surface effects on the free vibration behavior of postbuckled circular higher-order shear deformable nanoplates including geometrical nonlinearity, Acta Astronautica 105 (2014) 417–427.CrossRefGoogle Scholar
  49. 49.
    S. Sahmani, M. Bahrami, M.M. Aghdam, R. Ansari, Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams, Composite Structures 118 (2014) 149–158.CrossRefGoogle Scholar
  50. 50.
    X. Liang, S. Hu, S. Shen, Surface effects on the post-buckling of piezoelectric nanowires, Physica E 69 (2015) 61–64.CrossRefGoogle Scholar
  51. 51.
    S. Sahmani, M.M. Aghdam, M. Bahrami, On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects, Composite Structures 121 (2015) 377–385.CrossRefGoogle Scholar
  52. 52.
    S. Sahmani, M. Bahrami, M.M. Aghdam, R. Ansari, Postbuckling behavior of circular higher-order shear deformable nanoplates including surface energy effects, Applied Mathematical Modelling 39 (2015) 3678–3689.MathSciNetCrossRefGoogle Scholar
  53. 53.
    L.H. Donnell, Beam, plates and shells, McGraw-Hill, New York, USA, 1976, pp. 377–445.Google Scholar
  54. 54.
    H.-S. Shen, Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell. Part II: Prediction under external pressure, Composite Structures 82 (2008) 362–370.CrossRefGoogle Scholar
  55. 55.
    H.-S. Shen, Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium, International Journal of Mechanical Sciences 51 (2009) 372–383.CrossRefGoogle Scholar
  56. 56.
    H.-S. Shen, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells, Composite Structures 93 (2011) 2496–2503.Google Scholar
  57. 57.
    H.-S. Shen, Postbuckling of functionally graded fiber reinforced composite laminated cylindrical shells, Part I: Theory and solutions, Composite Structures 94 (2012) 1305–1321.Google Scholar
  58. 58.
    H.-S. Shen, Y. Xiang, Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments, Composites Part B: Engineering 67 (2014) 50–61.CrossRefGoogle Scholar
  59. 59.
    R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11 (2000) 139–147.CrossRefGoogle Scholar
  60. 60.
    R. Zhu, E. Pan, P.W. Chung, X. Cai, K.M. Liew, A. Buldum, Atomistic calculation of elastic moduli in strained silicon, Semiconductor Science and Technology 21 (2006) 906–911.CrossRefGoogle Scholar
  61. 61.
    P. Mirfakhraei, D. Redekop, Buckling of circular cylindrical shells by the differential quadrature method, International Journal of Pressure Vessels and Piping 75 (1998) 347–353.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations