Acta Mechanica Solida Sinica

, Volume 30, Issue 2, pp 174–189 | Cite as

Effect of temperature on pull-in voltage and nonlinear vibration behavior of nanoplate-based NEMS under hydrostatic and electrostatic actuations

  • Forzad Ebrahimi
  • S. H. S. Hosseini


This paper deals with the study of the temperature effect on the nonlinear vibration behavior of nanoplate-based nano electromechanical systems (NEMS) subjected to hydrostatic and electrostatic actuations. Using Eringen’s nonlocal elasticity and Gurtin—Murdoch theory, the nonlocal plate model is derived through Hamilton’s principle. The governing equation which is extremely nonlinear due to the geometrical nonlinearity and electrostatic attraction forces is solved numerically using the differential quadrature method (DQM). The accuracy of the present method is verified by comparing the obtained results with the experimental data and those in the literature and very good agreement is obtained. Finally a comprehensive study is carried out to determine the influence of temperature on the nonlinear vibration characteristics of NEMS made of two different materials including aluminum (Al) and silicon (Si) and some conclusions are drawn.


Small scale effect Nano electromechanical system Nonlinear vibration Temperature effect Pull-in voltage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.CrossRefGoogle Scholar
  2. 2.
    A. Maiti, A. Svizhenko, M.P. Anantram, Electronic transport through carbon nanotubes: effects of structural deformation and tube, chirality, Phys. Rev. Lett. 88 (2002) 126805.CrossRefGoogle Scholar
  3. 3.
    A.P. Chauhan, D.G. Ashwell, Small and large amplitude free vibrations square shallow shells, Int. J. Mech. Sci. 11 (1969) 337–350.CrossRefGoogle Scholar
  4. 4.
    S.C. Pradhan, A. Kumar, Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method, Comput. Mater. Sci. 50 (2010) 239–245.CrossRefGoogle Scholar
  5. 5.
    N. Yamaki, Influence of large amplitudes on flexural vibrations of elastic plates, Z. Angew. Math. Mech. 41 (1961) 601–610.CrossRefGoogle Scholar
  6. 6.
    A.R. Setoodeh, P. Malekzadeh, A.R. Vosoughi, Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory, J. Mech. Eng. Sci. 7 (2011) 1896–1906.Google Scholar
  7. 7.
    A. Ghorbanpour Arani, R. Kolahchi, A.M. Barzoki, M.R. Mozdianfard, S.M. Noudeh Farahani, Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic grapheme sheets using differential quadrature method, J. Mech. Eng. Sci. 227 (4) (2013) 862–879.CrossRefGoogle Scholar
  8. 8.
    S. Razavi, A. Shooshtari, Nonlinear free vibration of magneto-electro-elastic rectangular plates, Compos. Struct. 119 (2015) 377–384.CrossRefGoogle Scholar
  9. 9.
    Z. Yan, L.Y. Jiang, Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints, Proc. R. Soc. A 468 (2012) 3458–3475.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhi Yan, Liying Jiang, Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness, J. Phys. D: Appl. Phys. 45 (2012) 255401.CrossRefGoogle Scholar
  11. 11.
    Y. Wang, F.M. Li, Y.Z. Wang, Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory, Physica E 67 (2015) 65–76.CrossRefGoogle Scholar
  12. 12.
    W.-M. Zhang, H Yan, Z.-K. Peng, G. Meng, Electrostatic pull-in instability in MEMS/NEMS: a review, Sens. Actuators: A Phys. 214 (2014) 187–218.CrossRefGoogle Scholar
  13. 13.
    L.A. Rocha, E. Cretu, R.F. Wolffenbuttel, Analysis and analytical modeling of static pull-in with application to MEMS-based voltage reference and process monitoring, J. Microelectromech. Syst. 13 (2004) 342–354.CrossRefGoogle Scholar
  14. 14.
    T. Mousavi, S. Bornassi, H. Haddadpour, The effect of small scale on the pull-in instability of nano-switches using DQM, Int. J. Solids Struct. 50 (2013) 1193–1202.CrossRefGoogle Scholar
  15. 15.
    W.S. Lee, K.C. Kwon, B.K. Kim, J.H. Cho, Frequency-shifting analysis of electrostatic tunable micro-mechanical actuator, J. Model. Simul. Microsyst. 2 (2001) 83–88.Google Scholar
  16. 16.
    O. Francais, I. Dufour, E. Sarraute, Analytical static modelling and optimization of electrostatic micropumps, J. Micromech. Microeng. 7 (1997) 183–185.CrossRefGoogle Scholar
  17. 17.
    R. Ansari, M. Mohammadi, M. Faghih Shojaei, R. Gholami, M.A. Darabi, A geometrically non-linear plate model including surface stress effect for the pull-in instability analysis of rectangular nanoplates under hydrostatic and electrostatic actuations, Int. J. Non-Linear Mech. 67 (2014) 16–26.CrossRefGoogle Scholar
  18. 18.
    T. Mousavi, S. Bornassi, H. Haddadpour, The effect of small scale on the pull-in instability of nano-switches using DQM, Int. J. Solids Struct. 50 (2013) 1193–1202.CrossRefGoogle Scholar
  19. 19.
    E. Tubaldi, F. Alijani, M. Amabili, Nonlinear vibrations and stability of a periodically supported rectangular plate in axial flow, Int. J. Non-Linear Mech. 66 (2014) 54–65.CrossRefGoogle Scholar
  20. 20.
    D. De Tommasi, G. Puglisi, G. Zurlo, Electromechanical instability and oscillating deformations in electroactive polymer films, Appl. Phys. Lett. 102 (2013) 011903.CrossRefGoogle Scholar
  21. 21.
    H. Sadeghian, G. Rezazadeh, E. Abbaspour, A. Tahmasebi, I. Hosainzadeh, The effect of residual stress on pull-in voltage of fixed-fixed end type MEM switches with variative electrostatic area, in: Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 2006 January 18–21.Google Scholar
  22. 22.
    S. Talebian, G. Rezazadeh, M. Fathalilou, B. Toosi, Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate, Mechatronics 20 (2010) 666–673.CrossRefGoogle Scholar
  23. 23.
    M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57 (1975) 291–323.MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Kitipornchai, X.Q. He, K.M. Liew, Continuum model for the vibration of multilayered grapheme sheets, Phys. Rev. B 72 (2005) 075443.CrossRefGoogle Scholar
  25. 25.
    S. Talebian, H. Yagubizade, G. Rezazadeh, Mechanical behavior of a rectangular micro plate with hydrostatic and electrostatic pressures actuation, in: Proceedings of the 16th Annual (International) Conference on Mechanical Engineering (ISME 2008), Kerman, Iran, 2008, pp. 14–16.Google Scholar
  26. 26.
    G. Rezazadeh, Y. Alizadeh, H. Yagubizade, Effect of residual stress on divergence instability of rectangular microplate subjected to nonlinear electrostatic pressure, J. Sens. Transducers 81 (2007) 1364–1372.Google Scholar
  27. 27.
    H.S. Park, Z. Suo, J. Zhou, P.A. Klein, Adynamic finite element method for in homogeneous deformation and electromechanical instability of dielectric elastomer transducers, Int. J. Solids Struct. 49 (2012) 2187–2194.CrossRefGoogle Scholar
  28. 28.
    A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci 10 (1972) 1–16.MathSciNetCrossRefGoogle Scholar
  29. 29.
    A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703–4710.CrossRefGoogle Scholar
  30. 30.
    I.S. Raju, G.V. Rao, K. Raju, Effect of longitudinal or inplane deformation and inertia on the large amplitude flexural vibrations of slender beams and thin plates, J. Sound Vib. 46 (1976) 415–425.CrossRefGoogle Scholar
  31. 31.
    W. Chen, C. Shu, W. He, The applications of special matrix products to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates, Comput. Struct 74 (2000) 65–76.MathSciNetCrossRefGoogle Scholar
  32. 32.
    P. Lancaster, M. Timenetsky, The Theory of Matrices With Applications, 2nd ed., Academic Press, Orlando, 1985.Google Scholar
  33. 33.
    O. Francais, I. Dufour, Normalized abacus for the global behavior of diaphragm: pneumatic, electrostatic, piezoelectric or electromagnetic actuation, J. Model. Simul. Microsyst. 2 (1999) 149–160.Google Scholar
  34. 34.
    R. Ansari, R. Gholami, M. Faghih Shojaei, V Mohammadi, M.A. Darabi, Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports, J. Eng. Mater. Technol. 134 (4) (2012) 041013.CrossRefGoogle Scholar
  35. 35.
    H.N. Chu, G. Herrman, Influence of large amplitude free flexural vibrations of rectangular elastic plates, J. Appl. Mech. 23 (1956) 532–540.MathSciNetGoogle Scholar
  36. 36.
    T. Wah, Large amplitude flexural vibrations of rectangular plates, Int.. J. Mech. Sci. 5 (1963) 425–438.CrossRefGoogle Scholar
  37. 37.
    C. Mei, K. Decha-umphai, A finite element method for nonlinear forced vibration of rectangular plates, AIAA J. 23 (1985) 1104–1110.CrossRefGoogle Scholar
  38. 38.
    C.Y. Chia, M.K. Prabhakara, A general mode approach to nonlinear flexural vibrations of laminated rectangular plates, J. Appl. Mech. 45 (1978) 623–628.CrossRefGoogle Scholar
  39. 39.
    T. Manoj, M. Ayyappan, K.S. Krishnan, B. Nageswara Rao, Nonlinear vibration analysis of thin laminated rectangular plates on elastic foundations, Z. Angew. Math. Mech. 80 (2000) 183–192.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Z.Q. Wang, Y.P. Zhao, Z.P. Huang, The effects of surface tension on the elastic properties of nanostructures, Int. J. Eng. Sci. 48 (2010) 140–150.CrossRefGoogle Scholar
  41. 41.
    Y. Fu, J. Zhang, Size-dependent pull-in phenomena in electrically actuated nanobeams in corporating surface energies, Appl. Math. Model. 35 (2011) 941–951.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations