Skip to main content
Log in

Effect of temperature on pull-in voltage and nonlinear vibration behavior of nanoplate-based NEMS under hydrostatic and electrostatic actuations

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This paper deals with the study of the temperature effect on the nonlinear vibration behavior of nanoplate-based nano electromechanical systems (NEMS) subjected to hydrostatic and electrostatic actuations. Using Eringen’s nonlocal elasticity and Gurtin—Murdoch theory, the nonlocal plate model is derived through Hamilton’s principle. The governing equation which is extremely nonlinear due to the geometrical nonlinearity and electrostatic attraction forces is solved numerically using the differential quadrature method (DQM). The accuracy of the present method is verified by comparing the obtained results with the experimental data and those in the literature and very good agreement is obtained. Finally a comprehensive study is carried out to determine the influence of temperature on the nonlinear vibration characteristics of NEMS made of two different materials including aluminum (Al) and silicon (Si) and some conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.

    Article  Google Scholar 

  2. A. Maiti, A. Svizhenko, M.P. Anantram, Electronic transport through carbon nanotubes: effects of structural deformation and tube, chirality, Phys. Rev. Lett. 88 (2002) 126805.

    Article  Google Scholar 

  3. A.P. Chauhan, D.G. Ashwell, Small and large amplitude free vibrations square shallow shells, Int. J. Mech. Sci. 11 (1969) 337–350.

    Article  Google Scholar 

  4. S.C. Pradhan, A. Kumar, Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method, Comput. Mater. Sci. 50 (2010) 239–245.

    Article  Google Scholar 

  5. N. Yamaki, Influence of large amplitudes on flexural vibrations of elastic plates, Z. Angew. Math. Mech. 41 (1961) 601–610.

    Article  Google Scholar 

  6. A.R. Setoodeh, P. Malekzadeh, A.R. Vosoughi, Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory, J. Mech. Eng. Sci. 7 (2011) 1896–1906.

    Google Scholar 

  7. A. Ghorbanpour Arani, R. Kolahchi, A.M. Barzoki, M.R. Mozdianfard, S.M. Noudeh Farahani, Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic grapheme sheets using differential quadrature method, J. Mech. Eng. Sci. 227 (4) (2013) 862–879.

    Article  Google Scholar 

  8. S. Razavi, A. Shooshtari, Nonlinear free vibration of magneto-electro-elastic rectangular plates, Compos. Struct. 119 (2015) 377–384.

    Article  Google Scholar 

  9. Z. Yan, L.Y. Jiang, Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints, Proc. R. Soc. A 468 (2012) 3458–3475.

    Article  MathSciNet  Google Scholar 

  10. Zhi Yan, Liying Jiang, Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness, J. Phys. D: Appl. Phys. 45 (2012) 255401.

    Article  Google Scholar 

  11. Y. Wang, F.M. Li, Y.Z. Wang, Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory, Physica E 67 (2015) 65–76.

    Article  Google Scholar 

  12. W.-M. Zhang, H Yan, Z.-K. Peng, G. Meng, Electrostatic pull-in instability in MEMS/NEMS: a review, Sens. Actuators: A Phys. 214 (2014) 187–218.

    Article  Google Scholar 

  13. L.A. Rocha, E. Cretu, R.F. Wolffenbuttel, Analysis and analytical modeling of static pull-in with application to MEMS-based voltage reference and process monitoring, J. Microelectromech. Syst. 13 (2004) 342–354.

    Article  Google Scholar 

  14. T. Mousavi, S. Bornassi, H. Haddadpour, The effect of small scale on the pull-in instability of nano-switches using DQM, Int. J. Solids Struct. 50 (2013) 1193–1202.

    Article  Google Scholar 

  15. W.S. Lee, K.C. Kwon, B.K. Kim, J.H. Cho, Frequency-shifting analysis of electrostatic tunable micro-mechanical actuator, J. Model. Simul. Microsyst. 2 (2001) 83–88.

    Google Scholar 

  16. O. Francais, I. Dufour, E. Sarraute, Analytical static modelling and optimization of electrostatic micropumps, J. Micromech. Microeng. 7 (1997) 183–185.

    Article  Google Scholar 

  17. R. Ansari, M. Mohammadi, M. Faghih Shojaei, R. Gholami, M.A. Darabi, A geometrically non-linear plate model including surface stress effect for the pull-in instability analysis of rectangular nanoplates under hydrostatic and electrostatic actuations, Int. J. Non-Linear Mech. 67 (2014) 16–26.

    Article  Google Scholar 

  18. T. Mousavi, S. Bornassi, H. Haddadpour, The effect of small scale on the pull-in instability of nano-switches using DQM, Int. J. Solids Struct. 50 (2013) 1193–1202.

    Article  Google Scholar 

  19. E. Tubaldi, F. Alijani, M. Amabili, Nonlinear vibrations and stability of a periodically supported rectangular plate in axial flow, Int. J. Non-Linear Mech. 66 (2014) 54–65.

    Article  Google Scholar 

  20. D. De Tommasi, G. Puglisi, G. Zurlo, Electromechanical instability and oscillating deformations in electroactive polymer films, Appl. Phys. Lett. 102 (2013) 011903.

    Article  Google Scholar 

  21. H. Sadeghian, G. Rezazadeh, E. Abbaspour, A. Tahmasebi, I. Hosainzadeh, The effect of residual stress on pull-in voltage of fixed-fixed end type MEM switches with variative electrostatic area, in: Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 2006 January 18–21.

  22. S. Talebian, G. Rezazadeh, M. Fathalilou, B. Toosi, Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate, Mechatronics 20 (2010) 666–673.

    Article  Google Scholar 

  23. M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57 (1975) 291–323.

    Article  MathSciNet  Google Scholar 

  24. S. Kitipornchai, X.Q. He, K.M. Liew, Continuum model for the vibration of multilayered grapheme sheets, Phys. Rev. B 72 (2005) 075443.

    Article  Google Scholar 

  25. S. Talebian, H. Yagubizade, G. Rezazadeh, Mechanical behavior of a rectangular micro plate with hydrostatic and electrostatic pressures actuation, in: Proceedings of the 16th Annual (International) Conference on Mechanical Engineering (ISME 2008), Kerman, Iran, 2008, pp. 14–16.

  26. G. Rezazadeh, Y. Alizadeh, H. Yagubizade, Effect of residual stress on divergence instability of rectangular microplate subjected to nonlinear electrostatic pressure, J. Sens. Transducers 81 (2007) 1364–1372.

    Google Scholar 

  27. H.S. Park, Z. Suo, J. Zhou, P.A. Klein, Adynamic finite element method for in homogeneous deformation and electromechanical instability of dielectric elastomer transducers, Int. J. Solids Struct. 49 (2012) 2187–2194.

    Article  Google Scholar 

  28. A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci 10 (1972) 1–16.

    Article  MathSciNet  Google Scholar 

  29. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703–4710.

    Article  Google Scholar 

  30. I.S. Raju, G.V. Rao, K. Raju, Effect of longitudinal or inplane deformation and inertia on the large amplitude flexural vibrations of slender beams and thin plates, J. Sound Vib. 46 (1976) 415–425.

    Article  Google Scholar 

  31. W. Chen, C. Shu, W. He, The applications of special matrix products to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates, Comput. Struct 74 (2000) 65–76.

    Article  MathSciNet  Google Scholar 

  32. P. Lancaster, M. Timenetsky, The Theory of Matrices With Applications, 2nd ed., Academic Press, Orlando, 1985.

    Google Scholar 

  33. O. Francais, I. Dufour, Normalized abacus for the global behavior of diaphragm: pneumatic, electrostatic, piezoelectric or electromagnetic actuation, J. Model. Simul. Microsyst. 2 (1999) 149–160.

    Google Scholar 

  34. R. Ansari, R. Gholami, M. Faghih Shojaei, V Mohammadi, M.A. Darabi, Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports, J. Eng. Mater. Technol. 134 (4) (2012) 041013.

    Article  Google Scholar 

  35. H.N. Chu, G. Herrman, Influence of large amplitude free flexural vibrations of rectangular elastic plates, J. Appl. Mech. 23 (1956) 532–540.

    MathSciNet  Google Scholar 

  36. T. Wah, Large amplitude flexural vibrations of rectangular plates, Int.. J. Mech. Sci. 5 (1963) 425–438.

    Article  Google Scholar 

  37. C. Mei, K. Decha-umphai, A finite element method for nonlinear forced vibration of rectangular plates, AIAA J. 23 (1985) 1104–1110.

    Article  Google Scholar 

  38. C.Y. Chia, M.K. Prabhakara, A general mode approach to nonlinear flexural vibrations of laminated rectangular plates, J. Appl. Mech. 45 (1978) 623–628.

    Article  Google Scholar 

  39. T. Manoj, M. Ayyappan, K.S. Krishnan, B. Nageswara Rao, Nonlinear vibration analysis of thin laminated rectangular plates on elastic foundations, Z. Angew. Math. Mech. 80 (2000) 183–192.

    Article  MathSciNet  Google Scholar 

  40. Z.Q. Wang, Y.P. Zhao, Z.P. Huang, The effects of surface tension on the elastic properties of nanostructures, Int. J. Eng. Sci. 48 (2010) 140–150.

    Article  Google Scholar 

  41. Y. Fu, J. Zhang, Size-dependent pull-in phenomena in electrically actuated nanobeams in corporating surface energies, Appl. Math. Model. 35 (2011) 941–951.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forzad Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Hosseini, S.H.S. Effect of temperature on pull-in voltage and nonlinear vibration behavior of nanoplate-based NEMS under hydrostatic and electrostatic actuations. Acta Mech. Solida Sin. 30, 174–189 (2017). https://doi.org/10.1016/j.camss.2017.02.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.02.001

Keywords

Navigation