Acta Mechanica Solida Sinica

, Volume 30, Issue 1, pp 99–111 | Cite as

An adaptive cell-based domain integration method for treatment of domain integrals in 3D boundary element method for potential and elasticity problems

Article

Abstract

An adaptive cell-based domain integration method (CDIM) is proposed for the treatment of domain integrals in 3D boundary element method (BEM). The domain integrals are computed in background cells rather than volume elements. The cells are created from the boundary elements based on an adaptive oct-tree structure and no other discretization is needed. Cells containing the boundary elements are subdivided into smaller sub-cells adaptively according to the sizes and levels of the boundary elements; and the sub-cells outside the domain are deleted to obtain the desired accuracy. The method is applied in the 3D potential and elasticity problems in this paper.

Keywords

Cell-based domain integration method Domain integrals BEM Potential problems Elasticity problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Jaswon, Integral equation methods in potential theory. I, in: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 275, 1963, pp. 23–32.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M.A. Jaswon, G.T. Symm, Integral Equation Methods in Potential Theory and Elastostatics, Oxford University Press, United Kingdom, 1977.MATHGoogle Scholar
  3. 3.
    M.K. Chati, S. Mukherjee, Y.X. Mukherjee, The boundary node method for three-dimensional linear elasticity, Int. J. Numer. Methods Eng. 46 (8) (1999) 1163–1184.CrossRefMATHGoogle Scholar
  4. 4.
    J. Lv, Y. Miao, H. Zhu, Boundary node method based on parametric space for 2D elasticity, Eng. Anal. Boundary Elem. 37 (4) (2013) 659–665.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    X. Li, J. Zhu, A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math. 230 (1) (2009) 314–328.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Y. Miao, Y.-H. Wang, An improved hybrid boundary node method in two-dimensional solids, Acta Mech. Solida Sin. 18 (4) (2005) 307–315.Google Scholar
  7. 7.
    Y. Miao, Y.-h. Wang, Meshless analysis for three-dimensional elasticity with singular hybrid boundary node method, Appl. Math. Mech. 27 (5) (2006) 673–681.CrossRefMATHGoogle Scholar
  8. 8.
    Y. Miao, T. He, Q. Yang, J. Zheng, Multi-domain hybrid boundary node method for evaluating top-down crack in Asphalt pavements, Eng. Anal. Boundary Elem. 34 (9) (2010) 755–760.CrossRefMATHGoogle Scholar
  9. 9.
    Y. Miao, T. He, H. Luo, H. Zhu, Dual hybrid boundary node method for solving transient dynamic fracture problems, Comput. Model. Eng. Sci. (CMES) 85 (6) (2012) 481–498.MathSciNetMATHGoogle Scholar
  10. 10.
    J. Zhang, X. Qin, X. Han, G. Li, A boundary face method for potential problems in three dimensions, Int. J. Numer. Methods Eng. 80 (3) (2009) 320–337.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    F. Zhou, J. Zhang, X. Sheng, G. Li, Shape variable radial basis function and its application in dual reciprocity boundary face method, Eng. Anal. Boundary Elem. 35 (2) (2011) 244–252.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J. Lv, Y. Miao, H. Zhu, Y. Li, A Kriging interpolation-based boundary face method for 3D potential problems, Eng. Anal. Boundary Elem. 37 (5) (2013) 812–817.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    S.-C. Hsiao, A. Mammoli, M. Ingber, The evaluation of domain integrals in complex multiply-connected three-dimensional geometries for boundary element methods, Comput. Mech. 32 (4-6) (2003) 226–233.CrossRefMATHGoogle Scholar
  14. 14.
    D. Nardini, C. Brebbia, A new approach to free vibration analysis using boundary elements, Appl. Math. Model. 7 (3) (1983) 157–162.CrossRefMATHGoogle Scholar
  15. 15.
    R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math. 3 (3) (1995) 251–264.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    A. Neves, C. Brebbia, The multiple reciprocity boundary element method in elasticity: a new approach for transforming domain integrals to the boundary, Int. J. Numer. Methods Eng. 31 (4) (1991) 709–727.CrossRefMATHGoogle Scholar
  17. 17.
    S. Ahmad, P.K. Banerjee, Free vibration analysis by BEM using particular integrals, J. Eng. Mech. 112 (7) (1986) 682–695.CrossRefGoogle Scholar
  18. 18.
    E. Pan, A. Chengz, Treatment of body forces in single-domain boundary integral equation method for anisotropic elasticity, Transformation of Domain Effects to the Boundary, 14, 2003, p. 95.Google Scholar
  19. 19.
    E. Pan, B. Amadei, A 3-D boundary element formulation of anisotropic elasticity with gravity, Appl. Math. Model. 20 (2) (1996) 114–120.CrossRefGoogle Scholar
  20. 20.
    X.-W. Gao, The radial integration method for evaluation of domain integrals with boundary-only discretization, Eng. Anal. Boundary Elem. 26 (10) (2002) 905–916.CrossRefMATHGoogle Scholar
  21. 21.
    X.-W. Gao, Evaluation of regular and singular domain integrals with boundary-only discretization—theory and Fortran code, J. Comput. Appl. Math. 175 (2) (2005) 265–290.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    S. Nintcheu Fata, Treatment of domain integrals in boundary element methods, Appl. Numer. Math. 62 (6) (2012) 720–735.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    M. Hematiyan, A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM, Comput. Mech. 39 (4) (2007) 509–520.CrossRefMATHGoogle Scholar
  24. 24.
    M. Hematiyan, A. Khosravifard, T. Bui, Efficient evaluation of weakly/strongly singular domain integrals in the BEM using a singular nodal integration method, Eng. Anal. Boundary Elem. 37 (4) (2013) 691–698.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Z. Sedaghatjoo, H. Adibi, Calculation of domain integrals of two dimensional boundary element method, Eng. Anal. Boundary Elem. 36 (12) (2012) 1917–1922.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    R. Dallner, G. Kuhn, Efficient evaluation of volume integrals in the boundary element method, Comput. Methods Appl. Mech. Eng. 109 (1) (1993) 95–109.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    M.S. Ingber, A.A. Mammoli, M.J. Brown, A comparison of domain integral evaluation techniques for boundary element methods, Int. J. Numer. Methods Eng. 52 (4) (2001) 417–432.CrossRefMATHGoogle Scholar
  28. 28.
    Y. Dong, C. Lu, Y. Li, J. Zhang, G. Xie, Y. Zhong, Accurate numerical evaluation of domain integrals in 3D boundary element method for transient heat conduction problem, Eng. Anal. Boundary Elem. 60 (2015) 89–94.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Y. Dong, J. Zhang, G. Xie, C. Lu, L. Han, P. Wang, A general algorithm for the numerical evaluation of domain integrals in 3D boundary element method for transient heat conduction, Eng. Anal. Boundary Elem. 51 (2015) 30–36.MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three dimensions, J. Comput. Phys. 155 (2) (1999) 468–498.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Y. Fu, K.J. Klimkowski, G.J. Rodin, E. Berger, J.C. Browne, J.K. Singer, R.A. Van De Geijn, K.S. Vemaganti, A fast solution method for three-dimensional many-particle problems of linear elasticity, Int. J. Numer. Methods Eng. 42 (7) (1998) 1215–1229.CrossRefMATHGoogle Scholar
  32. 32.
    Q. Wang, Y. Miao, H. Zhu, A fast multipole hybrid boundary node method for composite materials, Comput. Mech. 51 (6) (2013) 885–897.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Q. Wang, Y. Miao, J. Zheng, The hybrid boundary node method accelerated by fast multipole expansion technique for 3D elasticity, Comput. Model. Eng. Sci. 70 (2) (2010) 123–151.MathSciNetMATHGoogle Scholar
  34. 34.
    Q. Wang, Y. Miao, H. Zhu, C. Zhang, An O (N) fast multipole hybrid boundary node method for 3D elasticity, Comput. Mater. Continua 28 (1) (2012) 1–25.Google Scholar
  35. 35.
    G. Of, O. Steinbach, P. Urthaler, Fast evaluation of volume potentials in boundary element methods, SIAM J. Sci. Comput. 32 (2) (2010) 585–602.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    J. Ding, W. Ye, L. Gray, An accelerated surface discretization-based BEM approach for non-homogeneous linear problems in 3-D complex domains, Int. J. Numer. Methods Eng. 63 (12) (2005) 1775–1795.CrossRefMATHGoogle Scholar
  37. 37.
    O. Steinbach, L. Tchoualag, Fast Fourier transform for efficient evaluation of Newton potential in BEM, Appl. Numer. Math. 81 (2014) 1–14.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Y. Shiah, Y.-C. Chaing, T. Matsumoto, Analytical transformation of volume integral for the time-stepping BEM analysis of 2D transient heat conduction in anisotropic media, Eng. Anal. Boundary Elem. 64 (2016) 101–110.MathSciNetCrossRefGoogle Scholar
  39. 39.
    W. Qu, W. Chen, Z. Fu, Solutions of 2D and 3D non-homogeneous potential problems by using a boundary element-collocation method, Eng. Anal. Boundary Elem. 60 (2015) 2–9.MathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Telles, A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals, Int. J. Numer. Methods Eng. 24 (5) (1987) 959–973.CrossRefMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina

Personalised recommendations