Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 1, pp 39–50 | Cite as

Interaction between a screw dislocation and a circular nano-inhomogeneity with a bimaterial interface

  • Tengwu He
  • Wanshen Xiao
  • Xiangdong Li
  • Yan Zhang
Article

Abstract

The problem of a screw dislocation interacting with a circular nano-inhomogeneity near a bimaterial interface is investigated. The stress boundary condition at the interface between the inhomogeneity and the matrix is modified by incorporating surface/interface stress. The analytical solutions to the problem in explicit series are obtained by an efficient complex variable method associated with the conformal mapping function. The image force exerted on the screw dislocation is also derived using the generalized Peach—Koehler formula. The results indicate that the elastic interference of the screw dislocation and the nano-inhomogeneity is strongly affected by a combination of material elastic dissimilarity, the radius of the inclusion, the distance from the center of inclusion to the bimaterial interface, and the surface/interface stress between the inclusion and the matrix. Additionally, it is found that when the inclusion and Material 3 are both harder than the matrix (μ1> μ2 and μ3 > μ2), a new stable equilibrium position for the screw dislocation in the matrix appears near the bimaterial interface; when the inclusion and Material 3 are both softer than the matrix μ1 < μ2 and μ3 < μ2), a new unstable equilibrium position exists close to the bimaterial interface.

Keywords

Screw dislocation Image force Conformai mapping Bimaterial interface Nano-inhomogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bose, N. Paitya, S. Bhattacharya, et al., Influence of light waves on the effective electron mass in quantum wells, wires, inversion layers and superlattices, Quantum Matter 1 (2) (2012) 89–126.CrossRefGoogle Scholar
  2. 2.
    Z.Y. Ou, S.D. Pang, A screw dislocation interacting with a coated nano-inhomogeneity incorporating interface stress, Mater. Sci. Eng. A 528 (6) (2011) 2762–2775.CrossRefGoogle Scholar
  3. 3.
    X.-Q. Fang, X.-H. Wang, L.-L. Zhang, Interface effect on the dynamic stress around an elliptical nano-inhomogeneity subjected to anti-plane shear waves, Comput. Mater. Continua 16 (3) (2010) 229–246.Google Scholar
  4. 4.
    I. Ovid’ko, N Skiba, Nanotwins induced by grain boundary deformation processes in nanomaterials, Scripta Mater 71 (2014) 33–36.CrossRefGoogle Scholar
  5. 5.
    S.R. Kalehbasti, M.Y. Gutkin, H Shodja, Wedge disclinations in the shell of a core–shell nanowire within the surface/interface elasticity, Mech. Mater 68 (2014) 45–63.CrossRefGoogle Scholar
  6. 6.
    J. Li, Q. Fang, Y. Liu, Interface effects on elastic behavior of a screw dislocation around double nanowires, Physica B: Cond. Matter 442 (2014) 6–11.CrossRefGoogle Scholar
  7. 7.
    W. Zhao, N. Tao, J. Guo, et al., High density nano-scale twins in Cu induced by dynamic plastic deformation, Scripta Mater 53 (6) (2005) 745–749.CrossRefGoogle Scholar
  8. 8.
    R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11 (3) (2000) 139.CrossRefGoogle Scholar
  9. 9.
    M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57 (4) (1975) 291–323.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Gurtin, J. Weissmller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium, Philos. Mag. A 78 (5) (1998) 1093–1109.CrossRefGoogle Scholar
  11. 11.
    H. Ahmadzadeh-Bakhshayesh, M.Y. Gutkin, H. Shodja, Surface/interface effects on elastic behavior of a screw dislocation in an eccentric core–shell nanowire, Int. J. Solids Struct. 49 (13) (2012) 1665–1675.CrossRefGoogle Scholar
  12. 12.
    P. Sharma, S. Ganti, Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, J. Appl. Mech. 71 (5) (2004) 663–671.CrossRefzbMATHGoogle Scholar
  13. 13.
    H. Duan, J. Wang, Z. Huang, et al., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids 53 (7) (2005) 1574–1596.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    C. Lim, Z. Li, L. He, Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress, Int. J. Solids Struct. 43 (17) (2006) 5055–5065.CrossRefzbMATHGoogle Scholar
  15. 15.
    T. Chen, G.J. Dvorak, Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli, Appl. Phys. Lett. 88 (21) (2006) 211912.CrossRefGoogle Scholar
  16. 16.
    L. Tian, R. Rajapakse, Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity, J. Appl. Mech. 74 (3) (2007) 568–574.CrossRefzbMATHGoogle Scholar
  17. 17.
    P. Sharma, L. Wheeler, Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension, J. Appl. Mech. 74 (3) (2007) 447–454.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Q. Fang, Y. Liu, Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress, Scripta Mater 55 (1) (2006) 99–102.CrossRefGoogle Scholar
  19. 19.
    Y. Liu, Q. Fang, Analysis of a screw dislocation inside an inhomogeneity with interface stress, Mater. Sci. Eng. A 464 (1) (2007) 117–123.CrossRefGoogle Scholar
  20. 20.
    Q. Fang, Y. Liu, Size-dependent elastic interaction between a screw dislocation and a circular nano-hole with surface stress, Phys. Status Solidi (b) 243 (4) (2006) R28–R30.CrossRefGoogle Scholar
  21. 21.
    M.Y. Gutkin, S.R. Kalehbasti, H. Shodja, Surface/interface effects on elastic behavior of an edge dislocation in the shell of a core–shell nanowire, Eur. J. Mech. A/Solids 41 (2013) 86–100.CrossRefGoogle Scholar
  22. 22.
    L. Tian, R. Rajapakse, Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity, Int. J. Solids Struct. 44 (24) (2007) 7988–8005.CrossRefzbMATHGoogle Scholar
  23. 23.
    J. Luo, Z. Xiao, Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity, Int. J. Eng. Sci. 47 (9) (2009) 883–893.CrossRefGoogle Scholar
  24. 24.
    J. Luo, X. Wang, On the anti-plane shear of an elliptic nano inhomogeneity, Eur. J. Mech. A/Solids 28 (5) (2009) 926–934.CrossRefzbMATHGoogle Scholar
  25. 25.
    J. Li, X. Zeng, Y. Liu, Screw dislocation interacting with a nanoscale cylindrical inclusion in an elastic half-plane, J. Comput. Theor. Nanos 10 (11) (2013) 2714–2721.CrossRefGoogle Scholar
  26. 26.
    R. Christensen, K. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27 (4) (1979) 315–330.CrossRefzbMATHGoogle Scholar
  27. 27.
    H.A. Luo, Y. Chen, An edge dislocation in a three-phase composite cylinder model, J. Appl. Mech. 58 (1991) 75–86.CrossRefzbMATHGoogle Scholar
  28. 28.
    Z. Xiao, B. Chen, A screw dislocation interacting with inclusions in fiber-reinforced composites, Acta Mech. 155 (3–4) (2002) 203–214.CrossRefzbMATHGoogle Scholar
  29. 29.
    H. Feng, Q. Fang, Y Liu, et al., Image force and stability of a screw dislocation inside a coated cylindrical inhomogeneity with interface stresses, Acta Mech. 220 (1–4) (2011) 315–329.CrossRefzbMATHGoogle Scholar
  30. 30.
    Q. Fang, Y. Liu, P. Wen, Screw dislocations in a three-phase composite cylinder model with interface stress, J. Appl. Mech. 75 (4) (2008) 041019.CrossRefGoogle Scholar
  31. 31.
    Z. Xiao, B. Chen, A screw dislocation interacting with a coated fiber, Mech. Mater. 32 (8) (2000) 485–494.CrossRefGoogle Scholar
  32. 32.
    Q. Fang, Y. Liu, B. Jin, et al., Effect of interface stresses on the image force and stability of an edge dislocation inside a nanoscale cylindrical inclusion, Int. J. Solids Struct. 46 (6) (2009) 1413–1422.CrossRefzbMATHGoogle Scholar
  33. 33.
    H. Chai, C. Jiang, F. Song, et al., The coupling interaction of a screw dislocation with a bimaterial interface and a nearby circular inclusion, Arch. Appl. Mech. 85 (11) (2015) 1733–1742.CrossRefGoogle Scholar
  34. 34.
    C. Jiang, H. Chai, P. Yan, et al., The interaction of a screw dislocation with a circular inhomogeneity near the free surface, Arch. Appl. Mech. 84 (3) (2014) 343–353.CrossRefzbMATHGoogle Scholar
  35. 35.
    N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Springer Science & Business Media, 1977.CrossRefGoogle Scholar
  36. 36.
    Z. Ou, S. Pang, A screw dislocation interacting with a coated nano-inhomogeneity incorporating interface stress, Mater. Sci. Eng. A 528 (6) (2011) 2762–2775.CrossRefGoogle Scholar
  37. 37.
    Q.H. Fang, Y.W. Liu, B. Jin, et al., Interaction between a dislocation and a core–shell nanowire with interface effects, Int. J. Solids Struct. 46 (46) (2009) 1539–1546.CrossRefzbMATHGoogle Scholar
  38. 38.
    E. Smith, The interaction between dislocations and inhomogeneities—I, Int. J. Eng. Sci. 6 (3) (1968) 129–143.CrossRefGoogle Scholar
  39. 39.
    Y. Liu, Q. Fang, C. Jiang, A piezoelectric screw dislocation interacting with an interphase layer between a circular inclusion and the matrix, Int. J. Solids Struct. 41 (11) (2004) 3255–3274.CrossRefzbMATHGoogle Scholar
  40. 40.
    A.H. England, Complex Variable Methods in Elasticity, Courier Corporation, 2012.Google Scholar
  41. 41.
    J. Shi, Z. Li, An approximate solution of the interaction between an edge dislocation and an inclusion of arbitrary shape, Mech. Res. Commun. 33 (6) (2006) 804–810.CrossRefzbMATHGoogle Scholar
  42. 42.
    S. Lee, The image force on the screw dislocation around a crack of finite size, Eng. Fract. Mech. 27 (5) (1987) 539–545.CrossRefGoogle Scholar
  43. 43.
    H.M. Shodja, M.Y. Gutkin, S.S. Moeini-Ardakani, Effect of surface stresses on elastic behavior of a screw dislocation inside the wall of a nanotube, Phys. Status Solidi (b) 248 (6) (2011) 1437–1441.CrossRefGoogle Scholar
  44. 44.
    V. Gryaznov, I. Polonsky, A. Romanov, et al., Size effects of dislocation stability in nanocrystals, Phys. Rev. B 44 (1) (1991) 42.CrossRefGoogle Scholar
  45. 45.
    V. Gryaznov, A. Kaprelov, A. Romanov, Size effect of dislocation stability in small particles and microcrystallites, Scripta Metall. 23 (8) (1989) 1443–1448.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  • Tengwu He
    • 1
  • Wanshen Xiao
    • 1
  • Xiangdong Li
    • 1
  • Yan Zhang
    • 1
  1. 1.College of Mechanical and Vehicle EngineeringHunan UniversityChangshaPR China

Personalised recommendations