Skip to main content

Advertisement

Log in

Moments of the Boltzmann distribution for RNA secondary structures

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We here present a dynamic programming algorithm which is capable of calculating arbitrary moments of the Boltzmann distribution for RNA secondary structures. We have implemented the algorithm in a program called RNA-VARIANCE and investigate the difference between the Boltzmann distribution of biological and random RNA sequences. We find that the minimum free energy structure of biological sequences has a higher probability in the Boltzmann distribution than random sequences. Moreover, we show that the free energies of biological sequences have a smaller variance than random sequences and that the minimum free energy of biological sequences is closer to the expected free energy of the rest of the structures than that of random sequences. These results suggest that biologically functional RNA sequences not only require a thermodynamically stable minimum free energy structure, but also an ensemble of structures whose free energies are close to the minimum free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benson, D.A., Karsch-Mizrachi, I., Lipman, D., Ostell, J., Wheeler, D., 2004. GenBank: update. Nucleic Acids Res. 32, D23–D26.

    Article  Google Scholar 

  • Dirks, R., Pierce, N., 2003. A partition function algorithm for nucleic acid secondary structure including pseudoknot. J. Comput. Chem. 24, 1664–1677.

    Article  Google Scholar 

  • Durbin, R., Eddy, S., Krogh, A., Mitchison, G., 1998. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Eppstein, D., Galil, Z., Giancarlo, R., 1988. Speeding up dynamic programming. In: Proc. 29th Symp. Foundations of Computer Science. Assoc. Comput. Mach., pp. 488–496.

  • Griffiths-Jones, S., 2004. The microRNA registry. Nucleic Acids Res. 32, D109–D111.

    Article  Google Scholar 

  • Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, M., Tacker, M., Schuster, P., 1994. Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125, 167–188.

    Article  Google Scholar 

  • Ishitani, R., Nureki, O., Nameki, N., Okada, N., Nishimura, S., Yokoyama, S., 2003. Alternative tertiary structure of tRNA for recognition of a post-transcriptional modification enzyme. Cell 113, 383–394.

    Article  Google Scholar 

  • Lyngsø, R., Pedersen, C., 2000. Pseudoknots in RNA secondary structures. In: Procceedings of RECOMB. Tokyo, Japan, pp. 201–209.

  • Lyngsø, R., Zuker, M., Pedersen, C., 1999. Fast evaluation of internal loops in RNA secondary structure prediction. Bioinformatics 15(6), 440–445.

    Article  Google Scholar 

  • Mathews, D., Sabina, J., Zuker, M., Turner, D., 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940.

    Article  Google Scholar 

  • McCaskill, J.S., 1990. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119.

    Article  Google Scholar 

  • Meyer, I.M., Miklós, I., 2004. Co-transcriptional folding is encoded within RNA genes. BMC Mol. Biol. 10, 5.

    Google Scholar 

  • Nebel, M., 2004a. Identifying good predictions of RNA secondary structure. In: Proceedings of the Pacific Symposium on Biocomputing. vol. 9. pp. 423–434.

    Google Scholar 

  • Nebel, M., 2004b. Investigation of the Bernoulli-model for RNA secondary structures. Bull. Math. Biol. 66(6), 925–964.

    Article  Google Scholar 

  • Nussinov, R., Jacobson, A., 1980. Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6309–6313.

    Article  Google Scholar 

  • Reeder, J., Giegerich, R., 2004. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104.

    Article  Google Scholar 

  • Rivas, E., Eddy, S., 2000. Secondary structure alone is generally not statistically significant for the detection of non-coding RNAs. Bioinformatics 16(7), 583–605.

    Article  Google Scholar 

  • Sankoff, D., Kruskal, J., Mainville, S., Cedergren, R., 1983. Fast algorithms to determine RNA secondary structures containing multiple loops. In: Sankoff, D., Kruskal, J. (Eds.), Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA, pp. 93–120.

    Google Scholar 

  • Szymanski, M., Barciszewska, M.Z., Erdmann, V.A., Barciszewski, J., 2002. 5S ribosomal RNA database. Nucleic Acids Res. 30, 176–178.

    Article  Google Scholar 

  • Tinoco, I.J., Borer, P., Dengler, B., Levine, M., Uhlenbeck, O., 1973. Improved estimation of secondary structure in ribonucleic acids. Nat. New Biol. 246, 40–41.

    Google Scholar 

  • Tinoco, I., Uhlenbeck, O.C., Levine, M.D., 1971. Estimation of secondary structure in ribonucleic acids. Nature 230, 362–367.

    Article  Google Scholar 

  • Workman, C., Krogh, A., 1999. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. Nucleic Acids Res. 27(24), 4816–4822.

    Article  Google Scholar 

  • Wuchty, S., Fontana, W., Hofacker, I., Schuster, P., 1999. Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 145–165.

    Article  Google Scholar 

  • Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H., 2003. Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc. Natl. Acad. Sci. USA 100, 15310–15315.

    Google Scholar 

  • Zuker, M., 1989. On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52.

    MathSciNet  Google Scholar 

  • Zuker, M., 2003. Mfold webserver for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415.

    Article  Google Scholar 

  • Zuker, M., Sankoff, D., 1984. RNA secondary structures and their prediction. Bull. Math. Biol. 46, 591–621.

    Article  Google Scholar 

  • Zuker, M., Stiegler, P., 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxilary information. Nucleic Acids Res. 9, 133–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmtraud M. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miklós, I., Meyer, I.M. & Nagy, B. Moments of the Boltzmann distribution for RNA secondary structures. Bull. Math. Biol. 67, 1031–1047 (2005). https://doi.org/10.1016/j.bulm.2004.12.003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.12.003

Keywords

Navigation