Skip to main content
Log in

A Michaelis-Menten-style model for the autocatalytic enzyme prostaglandin H synthase

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Prostaglandin H synthase (PGHS) is an autocatalytic enzyme which plays a key role in the arachidonic acid metabolic pathway. PGHS mediates the formation of prostaglandin H2, the precursor for a number of prostaglandins which are important in a wide variety of biological processes, including inflammation, blood clotting, renal function, and tumorigenesis. Here we present a Michaelis-Menten-style model for PGHS. A stability analysis determines when the reaction becomes self-sustaining, and can help explain the regulation of PGHS activity in vivo. We also consider a quasi-steady-state approximation (QSSA) for the model, and present conditions under which the QSSA is expected to be a good approximation. Applying the QSSA for this model can be useful in computationally intensive modeling endeavors involving PGHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bambai, B., Kulmacz, R.J., 2000. Prostaglandin H synthase. J. Biol. Chem. 275, 27608–27614.

    Google Scholar 

  • Baron, J.A., Sandler, R.S., 2000. Nonsteroidal anti-inflammatory drugs and cancer prevention. Annu. Rev. Med. 51, 511–523.

    Article  Google Scholar 

  • Borghans, J.A.M., De Boer, R.J., Segel, L.A., 1996. Extending the quasi-steady state approximation by changing variables. B. Math. Biol. 58, 43–63.

    Article  Google Scholar 

  • Char, B.W., Russo, M.F., 1994. Automatic identification of time scales in enzyme kinetics models. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, Oxford, UK, July 20–22. Association of Computing Machinery.

  • Dietz, R., Nastainczyk, W., Ruf, H.H., 1988. Higher oxidation-states of prostaglandin-H synthase—rapid electronic spectroscopy detected 2 spectral intermediates during the peroxidase reaction with prostaglandin-G2. Eur. J. Biochem. 171, 321–328.

    Article  Google Scholar 

  • Edelstein-Keshet, L., 1988. Mathematical Models in Biology. Random House, New York.

    Google Scholar 

  • Fenichel, N., 1971. Persistence and smoothness of invariant manifolds for flows. Indiana U. Math. J. 21, 193–226.

    Article  MATH  MathSciNet  Google Scholar 

  • Fersht, A., 1985. Enzyme Structure and Mechanism. W.H. Freeman and Company, New York.

    Google Scholar 

  • Ford-Hutchinson, A.W., Gresser, M., Young, R.N., 1994. 5-lipoxygenase. Annu. Rev. Biochem. 63, 383–417.

    Article  Google Scholar 

  • Funk, C.D, 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875.

    Article  Google Scholar 

  • Giovannucci, E., 1999. The prevention of colorectal cancer by aspirin use. Biomed. Pharmacother. 53, 303–308.

    Article  Google Scholar 

  • Hawkey, C.J., 2002. Cyclooxygenase inhibition: between the devil and the deep blue sea. Gut 50(Suppl. III), iii25–iii30.

    Google Scholar 

  • Hazelton, W.D., Tien, J.H., Donato, V.W., Sparks, R., Ulrich, C.M., 2004. Prostaglandin H synthases: members of a class of quasi-linear threshold switches. Biochem. Pharmacol. 68, 423–432.

    Article  Google Scholar 

  • Jones, C.K.R.T., 1994. Geometric singular perturbation theory. In: Arnold, L. (Ed.), Dynamical Systems, Montecatini Terme. Lecture Notes in Mathematics, vol. 1609. Springer-Verlag, Berlin, pp. 44–118.

    Google Scholar 

  • Kulmacz, R.J., 1998. Cellular regulation of prostaglandin H synthase catalysis. FEBS Lett. 430, 154–157.

    Article  Google Scholar 

  • Lin, C.C., Segel, L.A., 1974. Mathematics Applied to Deterministic Problems in the Natural Sciences. Macmillan Publishing Company, Inc, New York.

    Google Scholar 

  • Lipsky, P.E., Brooks, P., Crofford, L.J., DuBois, R., Graham, D., Simon, L.S., van de Putte, L.B., Abramson, S.B., 2001. Unresolved issues in the role of cyclooxygenase-2 in normal physiologic processes and disease. Arch. Intern. Med. 169, 913–920.

    Google Scholar 

  • Lu, G., Tsai, A.L., van Wart, H.E., Kulmacz, R.J., 1999. Comparison of the peroxidase reaction kinetics of prostaglandin H synthase-1 and 2. J. Biol. Chem. 274, 16162–16167.

    Google Scholar 

  • Mizuno, K., Yamamoto, S., Lands, W.E.M., 1982. Effects of non-steroidal anti-inflammatory drugs on fatty-acid cyclooxygenase and prostaglandin hydroperoxidase activities. Prostaglandins 23, 743–757.

    Google Scholar 

  • Sandler, R.S. et al., 2003. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. New Engl. J. Med. 348, 883–890.

    Article  Google Scholar 

  • Schnell, S., Maini, P.K., 2000. Enzyme kinetics at high enzyme concentration. B. Math. Biol. 62, 483–499.

    Article  Google Scholar 

  • Segel, L.A., 1988. On the validity of the steady state assumption of enzyme kinetics. B. Math. Biol. 50, 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L.A., Slemrod, M., 1989. The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477.

    Article  MathSciNet  Google Scholar 

  • Smith, W.L., DeWitt, D.L., Garavito, R.M., 2000. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182.

    Article  Google Scholar 

  • Smith, W.L., Garavito, R.M., DeWitt, D.L., 1996. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and-2. J. Biol. Chem. 271, 33157–33160.

    Google Scholar 

  • Smith, C.J. et al., 1998. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc. Natl. Acad. Sci. USA 95, 13313–13318.

    Google Scholar 

  • Taketo, M.M., 1998. Cyclooxygenase-2 inhibitors in tumorigenesis (Part II). J. Natl. Cancer I 90, 1609–1620.

    Article  Google Scholar 

  • Thun, M.J., Henley, S.J., Patrono, C., 2002. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer I 94, 252–266.

    Google Scholar 

  • Turini, M.E., DuBois, R.N., 2002. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53, 35–57.

    Article  Google Scholar 

  • Tzafriri, A.R., 2003. Michaelis-Menten kinetics at high enzyme concentrations. B. Math. Biol. 65, 1111–1129.

    Article  Google Scholar 

  • Vane, J.R., Bakhle, Y.S., Botting, R.M., 1998. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. 38, 97–120.

    Article  Google Scholar 

  • Wei, C., Kulmacz, R.J., Tsai, A.L., 1995. Comparison of branched-chain and tightly coupled reaction mechanisms for prostaglandin H synthase. Biochemistry 34, 8499–8512.

    Article  Google Scholar 

  • Williams, C.S., Mann, M., DuBois, R.N., 1999. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18, 7908–7916.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Tien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien, J.H., Hazelton, W.D., Sparks, R. et al. A Michaelis-Menten-style model for the autocatalytic enzyme prostaglandin H synthase. Bull. Math. Biol. 67, 683–700 (2005). https://doi.org/10.1016/j.bulm.2004.09.007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.09.007

Keywords

Navigation