Skip to main content
Log in

Synchrony & chaos in patchy ecosystems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The apparent synchronisation of spatially discrete populations is a well documented phenomenon. However, it is not clear what the governing mechanisms are for this synchrony, and whether they are robust over a range of environmental conditions and patch specific population dynamic behaviours. In this paper, we explore two (possibly interacting) modes of coupling, and investigate their theoretically discernible, and perhaps even experimentally measurable, signatures. To aid us in this investigation we employ a planktonic example system, with direct application to plankton patchiness. Furthermore, we address the role of chaos in complex spatio-temporal dynamics; we find that chaos associated with funnel attractors can play a distinguished role, over dynamics less sensitive to small variations, in being more susceptible to generalised synchronisation (such as phase synchronisation) in the presence of small local parameter variation. This is in contrast to the case for coupled systems with identical dynamics, and suggests that non-identically coupled systems are more vulnerable to global extinction events when exhibiting funnel-type chaotic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel, H. D. I., N. F. Rulkov and M. M. Sushchik (1996). Generalized synchronization of chaos: the auxiliary systems approach. Phys. Rev. E 53, 4258–4535.

    Article  Google Scholar 

  • Alexander, J. C., J. A. Yorke, Z. You and I. Kan (1992). Riddled basins. Int. J. Bifurcation Chaos 2, 795–813.

    Article  MathSciNet  Google Scholar 

  • Allen, J., W. Schaffer and D. Rosko (1993). Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–234.

    Article  Google Scholar 

  • Ashwin, P., J. Buescu and I. Stewart (1994). Bubbling of attractors and synchronisation of chaotic oscillators. Phys. Lett. A 193, 126–139.

    Article  MathSciNet  Google Scholar 

  • Belykh, B., I. V. Belykh and E. Mosekilde (2001). Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys. Rev. E 63, 036216.

    Google Scholar 

  • Blasius, B. and L. Stone (2000a). Chaos and phase synchronization in ecological systems. Int. J. Bifurcation Chaos 10, 2361–2380.

    Article  Google Scholar 

  • Blasius, B. and L. Stone (2000b). Nonlinearity and the Moran effect. Nature 406, 846–847.

    Article  Google Scholar 

  • Dunn, M. R. and M. G. Pawson (2002). The stock structure and migrations of plaice populations on the west coast of England and Wales. J. Fish Biol. 61, 360–393.

    Article  Google Scholar 

  • Eckmann, J.-P. and D. Ruelle (1985). Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656.

    Article  MathSciNet  Google Scholar 

  • Edwards, A. M. and M. A. Bees (2001). Generic dynamics of a simple plankton population model with a non-integer exponent of closure. Chaos Solitons Fractals 12, 289–300.

    Article  Google Scholar 

  • Edwards, A. M. and J. Brindley (1996). Oscillatory behaviour in a three component plankton population model. Dyn. Stab. Syst. 11, 347–370.

    Google Scholar 

  • Fox, C. J., B. P. Planque and C. P. Darby (2002). Synchrony in the recruitment time-series of plaice (Pleuronectes platessa L) around the United Kingdom and the influence of sea temperature. J. Sea. Res. 44, 159–168.

    Article  Google Scholar 

  • Fujisaka, H. and T. Yamada (1983). Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–48.

    Article  MathSciNet  Google Scholar 

  • Grenfell, B. T., K. Wilson, B. F. Finkelstädt, T. N. Coulson, S. Murray, S. D. Albon, J. M. Pemberton, T. H. Clutton-Brock and M. J. Crawley (1998). Noise and determinism in synchronized sheep dynamics. Nature 394, 674–677.

    Article  Google Scholar 

  • Hastings, A. and T. Powell (1991). Chaos in a three species food chain. Ecology 72, 896–903.

    Article  Google Scholar 

  • Hillary, R. M. (2003). Effects of turbulence and a patchy environment on the dynamics of plankton populations, PhD thesis, University of Surrey.

  • Hillary, R. M. and M. A. Bees (2004). Plankton lattices and the role of chaos in plankton patchiness. Phys. Rev. E 69, 031913.

    Google Scholar 

  • Hudson, P. J. and I. M. Cattadori (1999). The Moran effect: a cause of population synchrony. TREE 14, 1–2.

    Article  Google Scholar 

  • Josic, K. (1998). Invariant manifolds and synchronization of coupled dynamical systems. Phys. Rev. Lett. 80, 3053–3056.

    Article  Google Scholar 

  • Keith, L. B. (1963). Wildlife’s Ten Year Cycle, Cambridge: Cambridge University Press.

    Google Scholar 

  • Moran, P. A. P. (1953). The statistical analysis of the Canadian lynx cycle. Aust. J. Zool. 1, 291–298.

    Article  Google Scholar 

  • Ott, E. and J. C. Sommerer (1994). Blowout bifurcations: the occurrence of riddled basins and on-off intermittency. Phys. Lett. A 188, 39–47.

    Article  Google Scholar 

  • Pecora, L. M. (1998). Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev. E 58, 347–360.

    Article  MathSciNet  Google Scholar 

  • Pecora, L. M. and T. L. Carroll (1990). Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825.

    Article  MathSciNet  Google Scholar 

  • Pecora, L. M., T. L. Carroll and J. F. Heagy (1995). Statistics for mathematical properties of maps between time series embeddings. Phys. Rev. E 52, 3420–3439.

    Article  Google Scholar 

  • Pikovsky, A. S. (1984). On the interaction of strange attractors. Z. Phys. B 55, 149–154.

    Article  MathSciNet  Google Scholar 

  • Pikovsky, A. S., M. G. Rosenblum, J. V. Osipov and J. Kurths (1997). Phase synchronization of chaotic oscillators by external driving. Physica D 104, 219–238.

    Article  MathSciNet  Google Scholar 

  • Rössler, O. E. (1976). An equation for continuous chaos. Phys. Lett. A 57, 397–398.

    Article  Google Scholar 

  • Steele, J. H. and E. W. Henderson (1981). A simple plankton model. Am. Naturalist 14, 157–183.

    Google Scholar 

  • Sughihara, G. and R. M. May (1990). Non-linear forecasting as a way of distinguishing chaos from measurement error. Nature 344, 734–741.

    Article  Google Scholar 

  • Wiggins, S. (1994). Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer: New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Hillary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillary, R.M., Bees, M.A. Synchrony & chaos in patchy ecosystems. Bull. Math. Biol. 66, 1909–1931 (2004). https://doi.org/10.1016/j.bulm.2004.05.006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.05.006

Keywords

Navigation