Bulletin of Mathematical Biology

, 66:1039 | Cite as

A history of the study of solid tumour growth: The contribution of mathematical modelling

  • R. P. Araujo
  • D. L. S. McElwainEmail author


A miscellany of new strategies, experimental techniques and theoretical approaches are emerging in the ongoing battle against cancer. Nevertheless, as new, ground-breaking discoveries relating to many and diverse areas of cancer research are made, scientists often have recourse to mathematical modelling in order to elucidate and interpret these experimental findings. Indeed, experimentalists and clinicians alike are becoming increasingly aware of the possibilities afforded by mathematical modelling, recognising that current medical techniques and experimental approaches are often unable to distinguish between various possible mechanisms underlying important aspects of tumour development.

This short treatise presents a concise history of the study of solid tumour growth, illustrating the development of mathematical approaches from the early decades of the twentieth century to the present time. Most importantly these mathematical investigations are interwoven with the associated experimental work, showing the crucial relationship between experimental and theoretical approaches, which together have moulded our understanding of tumour growth and contributed to current anti-cancer treatments.

Thus, a selection of mathematical publications, including the influential theoretical studies by Burton, Greenspan, Liotta et al., McElwain and co-workers, Adam and Maggelakis, and Byrne and co-workers are juxtaposed with the seminal experimental findings of Gray et al. on oxygenation and radio-sensitivity, Folkman on angiogenesis, Dorie et al. on cell migration and a wide variety of other crucial discoveries. In this way the development of this field of research through the interactions of these different approaches is illuminated, demonstrating the origins of our current understanding of the disease.


Residual Stress Necrotic Core Multiphase Model Necrotic Region Multicellular Spheroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abercrombie, M. (1970). Contact inhibition in tissue culture. In vitro 6, 128–140.Google Scholar
  2. Adam, J. A. (1986). A simplified mathematical model of tumor growth. Math. Biosci. 81, 229–244.zbMATHCrossRefGoogle Scholar
  3. Adam, J. A. (1987a). A mathematical model of tumor growth. ii. Effects of geometry and spatial uniformity on stability. Math. Biosci. 86, 183–211.zbMATHCrossRefGoogle Scholar
  4. Adam, J. A. (1987b). A mathematical model of tumor growth. iii. Comparison with experiment. Math. Biosci. 86, 213–227.zbMATHCrossRefGoogle Scholar
  5. Adam, J. A. (1989). Corrigendum: a mathematical model of tumor growth by diffusion. Math. Biosci. 94, 155.MathSciNetCrossRefGoogle Scholar
  6. Adam, J. A. and N. Bellomo (1997). A Survey of Models for Tumor-Immune System Dynamics, Boston: Birkhauser.zbMATHGoogle Scholar
  7. Adam, J. A. and S. A. Maggelakis (1989). Mathematical models of tumor growth. iv. Effects of a necrotic core. Math. Biosci. 97, 121–136.CrossRefzbMATHGoogle Scholar
  8. Adam, J. A. and S. A. Maggelakis (1990). Diffusion regulated characteristics of a spherical prevascular carcinoma. Bull. Math. Biol. 52, 549–582.CrossRefzbMATHGoogle Scholar
  9. Adam, J. A. and R. D. Noren (2002). Equilibrium model of a vascularized spherical carcinoma. J. Math. Biol. 31, 735–745.MathSciNetCrossRefGoogle Scholar
  10. Adam, J. A. and J. C. Panetta (1995). A simple mathematical model and alternative paradigm for certain chemotherapeutic regimens. Math. Comput. Modelling 22, 49–60.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter (2002). Molecular Biology of the Cell, 4th edn, New York: Garland Science.Google Scholar
  12. Ambrosi, D. and F. Mollica (2002). On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297–1316.MathSciNetCrossRefGoogle Scholar
  13. Ambrosi, D. and F. Mollica (2003). Numerical simulation of the growth of a multicellular spheroid, in Second M.I.T. Conference on Computational Fluid and Solid Mechanics, UK: Elsevier Ltd, pp. 1608–1612.Google Scholar
  14. Ambrosi, D. and L. Preziosi. On the closure of mass balance models for tumour growth. Math. Models Methods Appl. Sci. (in press).Google Scholar
  15. Anderson, A. R. A. and M. A. J. Chaplain (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–899.CrossRefzbMATHGoogle Scholar
  16. Anderson, A. R. A., M. A. J. Chaplain, R. J. Steele, E. L. Newman and A. Thompson (2000). Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129–154.zbMATHGoogle Scholar
  17. Araujo, R. P. and D. L. S. McElwain. A linear-elastic model of anisotropic tumour growth. Eur. J. Appl. Math. (in press-a).Google Scholar
  18. Araujo, R. P. and D. L. S. McElwain. The nature of the stresses induced during tissue growth. Appl. Math. Lett. (in press-b).Google Scholar
  19. Araujo, R. P. and D. L. S. McElwain. A mixture theory for the genesis of residual stresses in growing tissues. SIAM J. Appl. Math. (submitted-a).Google Scholar
  20. Araujo, R. P. and D. L. S. McElwain. New insights into vascular collapse and growth dynamics in solid tumours. J. Theor. Biol. (submitted-b).Google Scholar
  21. Araujo, R. P. and D. L. S. McElwain (2003a). An anisotropic model of vascular tumor growth: implications for vascular collapse, in Second M.I.T. Conference on Computational Fluid and Solid Mechanics, Oxford, UK: Elsevier Ltd, pp. 1613–1616.Google Scholar
  22. Araujo, R. P. and D. L. S. McElwain (2003b). The genesis of residual stresses and vascular collapse in solid tumours, in Proceedings of the Sixth Engineering Mathematics and Applications Conference, Engineering Mathematics Group, ANZIAM, pp. 1–6.Google Scholar
  23. Arve, B. H. and A. I. Liapis (1988). Oxygen tension in tumors predicted by a diffusion with absorption model involving a moving free boundary. Math. Comput. Modelling 10, 159–174.CrossRefzbMATHGoogle Scholar
  24. Australian Institute of Health and Welfare (AIHM). Cancer in Australia 1999. Available from
  25. Aznavoorian, S., M. L. Stracke, H. Krutzsch, E. Schiffman and L. A. Liotta (1990). Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumour cells. J. Cell Biol. 110, 1427–1438.CrossRefGoogle Scholar
  26. Barr, L. C. (1989). The encapsulation of tumours. Clin. Exp. Metastasis 7, 1813–1816.CrossRefGoogle Scholar
  27. Barr, L. C., R. L. Carter and A. J. S. Davies (1988). Encapsulation of tumours as a modified wound healing response. Lancet ii, 135–137.CrossRefGoogle Scholar
  28. Baxter, L. T. and R. K. Jain (1989). Transport of fluid and macromolecules in tumors: I. Role of interstitial pressure and convection. Microvasc. Res. 37, 77–104.CrossRefGoogle Scholar
  29. Baxter, L. T. and R. K. Jain (1990). Transport of fluid and macromolecules in tumors: Ii. Role of heterogeneous perfusion and lymphatics. Microvasc. Res. 40, 246–263.CrossRefGoogle Scholar
  30. Baxter, L. T. and R. K. Jain (1991). Transport of fluid and macromolecules in tumors: Iv. A microscopic model of the perivascular distribution. Microvasc. Res. 41, 252–272.CrossRefGoogle Scholar
  31. Baxter, L. T. and R. K. Jain (1996). Pharmacokinetic analysis of microscopic distribution of enzyme-conjugated antibodies and prodrugs: comparison with experimental data. Br. J. Cancer 73, 447–456.Google Scholar
  32. Berenblum, L. (1970). The nature of tumour growth, in General Pathology, 4th edn, H. E. W. Florey (Ed.), Lloyd-Luke.Google Scholar
  33. Bertuzzi, A., A. Fasano and A. Gandolfi (2003). Cell kinetics in tumour cords studied by a model with variable cell cycle length, in Second M.I.T. Conference on Computational Fluid and Solid Mechanics, pp. 1631–1633.Google Scholar
  34. Bertuzzi, A., A. Fasano, A. Gandolfi and D. Marangi (2002). Cell kinetics in tumour cords studied by a model with variable cell cycle length. Math. Biosci. 177 & 178, 103–125.MathSciNetCrossRefGoogle Scholar
  35. Bertuzzi, A. and A. Gandolfi (2000). Cell kinetics in a tumour cord. J. Theor. Biol. 204, 587–599.CrossRefGoogle Scholar
  36. Boucher, Y. and R. K. Jain (1992). Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52, 5110–5114.Google Scholar
  37. Boucher, Y., J. M. Kirkwoord, D. Opacic, M. Desantis and R. K. Jain (1991). Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 51, 6691–6694.Google Scholar
  38. Boucher, Y., M. Leunig and R. K. Jain (1996). Tumor angiogenesis and interstitial hypertension. Cancer Res. 56, 4264–4266.Google Scholar
  39. Bowen, R. M. (1982). Compressible porous mediamodels by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735.zbMATHCrossRefGoogle Scholar
  40. Bowen, R. M. (1976). Theory of mixtures, in Continuum Physics, A. C. Eringen (Ed.), vol. 3, New York: Academic Press.Google Scholar
  41. Bowen, R. M. (1980). Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148.zbMATHCrossRefGoogle Scholar
  42. Bowen, R. M. and J. C. Wiese (1969). Diffusion in mixtures of elastic materials. Int. J. Eng. Sci. 7, 689–722.CrossRefzbMATHGoogle Scholar
  43. Breward, C. J. W., H. M. Byrne and C. E. Lewis (2002). The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45, 125–152.MathSciNetCrossRefzbMATHGoogle Scholar
  44. Breward, C. J. W., H. M. Byrne and C. E. Lewis (2003). A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65, 609–640.CrossRefGoogle Scholar
  45. Britton, N. F. and M. A. J. Chaplain (1992). A qualitative analysis of some models of tissue growth. Math. Biosci. 113, 77–89.CrossRefGoogle Scholar
  46. Brody, S. (1945). Bioenergetics and Growth, New York: Reinhold Publ. Co.Google Scholar
  47. Brown, N. J., C. A. Staton, G. R. Rodgers, K. P. Corke, J. C. E. Underwood and C. E. Lewis (2002). Fibrinogen e fragment selectively disrupts the vasculature and inhibits the growth of tumours in a syngeneic murine model. Br. J. Cancer 86, 1813–1816.CrossRefGoogle Scholar
  48. Bullough, W. S. (1965). Mitotic and functional homeostasis: a speculative review. Cancer Res. 25, 1683–1727.Google Scholar
  49. Bullough, W. S. and J. U. R. Deol (1971). The pattern of tumour growth. Symp. Soc. Exp. Biol. 25, 255–275.Google Scholar
  50. Burton, A. C. (1966). Rate of growth of solid tumours as a problem of diffusion. Growth 30, 157–176.Google Scholar
  51. Byrne, H. B., J. R. King, D. L. S. McElwain and L. Preziosi. A two-phase model of solid tumour growth. Appl. Math. Lett. (in press).Google Scholar
  52. Byrne, H. M. (1997a). The effect of time delays on the dynamics of avascular tumour growth. Math. Biosci. 144, 83–117.zbMATHMathSciNetCrossRefGoogle Scholar
  53. Byrne, H. M. (1997b). The importance of intercellular adhesion in the development of carcinomas. IMA J. Math. Appl. Med. Biol. 14, 305–323.zbMATHGoogle Scholar
  54. Byrne, H. M. (1999a). Using mathematics to study solid tumour growth, in Proceedings of the 9th General Meetings of European Women in Mathematics, pp. 81–107.Google Scholar
  55. Byrne, H. M. (1999b). A weakly nonlinear analysis of a model of avascular solid tumour growth. J. Math. Biol. 39, 59–89.zbMATHMathSciNetCrossRefGoogle Scholar
  56. Byrne, H. M. and M. A. J. Chaplain (1995). Growth of nonnecrotic tumours in the presence and absence of inhibitors. Math. Biosci. 130, 151–181.CrossRefzbMATHGoogle Scholar
  57. Byrne, H. M. and M. A. J. Chaplain (1996a). Growth of necrotic tumours in the presence and absence of inhibitors. Math. Biosci. 135, 187–216.CrossRefzbMATHGoogle Scholar
  58. Byrne, H. M. and M. A. J. Chaplain (1996b). Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math. Comput. Modelling 24, 1–17.CrossRefzbMATHGoogle Scholar
  59. Byrne, H. M. and M. A. J. Chaplain (1997). Free boundary value problems associated with the growth and development of multicellular spheroids. Eur. J. Appl. Math. 8, 639–658.MathSciNetCrossRefzbMATHGoogle Scholar
  60. Byrne, H. M. and M. A. J. Chaplain (1998). Necrosis and apoptosis: distinct cell loss mechanisms in a mathematical model of avascular tumour growth. J. Theor. Med. 1, 223–235.zbMATHCrossRefGoogle Scholar
  61. Byrne, H. M. and S. A. Gourley (1997). The role of growth factors in avascular tumour growth. Math. Comput. Modelling 4, 35–55.MathSciNetCrossRefGoogle Scholar
  62. Byrne, H. M. and L. Preziosi. Modelling solid tumor growth using the theory of mixtures. IMA J. Appl. Math. Lett. (in press).Google Scholar
  63. Casciari, J. J., S. V. Sotirchos and R. M. Sutherland (1984). Identification of a tumour inhibitory factor in rat ascites fluid. Biochem. Biophys. Res. Comm. 119, 76–82.CrossRefGoogle Scholar
  64. Chance, B. (1957). Cellular oxygen requirements. Fed. Proc. 16, 671–680.Google Scholar
  65. Chaplain, M. A. J. (1993). The development of a spatial pattern in a model for cancer growth, in Experimental and Theoretical Advances in Biological Pattern Formation, H. G. Othmer et al. (Eds), Plenum Press.Google Scholar
  66. Chaplain, M. A. J. (1996). Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumour development. Math. Comput. Modelling 23, 47–87.zbMATHCrossRefGoogle Scholar
  67. Chaplain, M. A. J., D. L. Benson and P. K. Maini (1994). Nonlinear diffusion of a growth inhibitory factor in multicell spheroids. Math. Biosci. 121, 1–13.CrossRefzbMATHGoogle Scholar
  68. Chaplain, M. A. J. and N. F. Britton (1993). On the concentration profile of a growth inhibitory factor in multicell spheroids. Math. Biosci. 115, 233–245.CrossRefzbMATHGoogle Scholar
  69. Chaplain, M. A. J. and L. Preziosi. Macroscopic modelling of the growth and development of tumor masses. Math. Models Methods Appl. Sci. (in press).Google Scholar
  70. Chaplain, M. A. J. and B. D. Sleeman (1993). Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory. J. Math. Biol. 31, 431–473.MathSciNetCrossRefzbMATHGoogle Scholar
  71. Chen, C. Y., H. M. Byrne and J. R. King (2001). The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids. J. Math. Biol. 43, 191–220.MathSciNetCrossRefzbMATHGoogle Scholar
  72. Chen, Y.-C. and A. Hoger (2000). Constitutive functions of elastic materials in finite growth and deformation. J. Elasticity 59, 175–193.CrossRefzbMATHGoogle Scholar
  73. Clarke, R., R. G. Dickson and N. Brunner (1988). The process of malignant progression in human breast cancer. Cancer Genet. Cytogenet. 14, 125–134.Google Scholar
  74. Cowin, S. C. (1996). Strain or deformation rate dependent finite growth in soft tissues. J. Biomech. 29, 647–649.CrossRefGoogle Scholar
  75. Cramer, W. (1934). The prevention of cancer. Lancet 1, 15.Google Scholar
  76. Cristini, V., J. Lowengrub and Q. Nie (2003). Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224.MathSciNetCrossRefzbMATHGoogle Scholar
  77. Cruveilier, (1829). Anatomie Pathologique du Corps Humain, Paris: Bailliere.Google Scholar
  78. Cui, S. (2002). Analysis of a mathematical model for the growth of tumors under the action of external inhibitors. J. Math. Biol. 44, 395–426.zbMATHMathSciNetCrossRefGoogle Scholar
  79. Cui, S. and A. Friedman (2000). Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164, 103–137.MathSciNetCrossRefzbMATHGoogle Scholar
  80. Danova, M., A. Riccardi and G. Mazzini (1990). Cell cycle-related proteins and flow cytometry. Haematologica 75, 252–264.Google Scholar
  81. Darzynkiewicz, Z. (1995). Apoptosis in antitumour strategies: modulation of cell-cycle or differentiation. J. Cell. Biochem. 58, 151–159.CrossRefGoogle Scholar
  82. David, P. D. et al. (2002). Zd6126: A novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res. 62, 7247–7253.Google Scholar
  83. De Angelis, E. and L. Preziosi (2000). Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem. Math. Models Methods Appl. Sci. 10, 379–408.MathSciNetCrossRefzbMATHGoogle Scholar
  84. Deakin, A. S. (1975). Model for the growth of a solid in vitro tumour. Growth 39, 159–165.Google Scholar
  85. Dorie, M. J., R. F. Kallman, D. F. Rapacchietta, D. van Antwerp and Y. R. Huang (1982). Migration and internalization of cells and polystyrene microspheres in tumour cell spheroids. Exp. Cell Res. 141, 201–209.CrossRefGoogle Scholar
  86. Dorie, M. J., R. F. Kallman and M. A. Coyne (1986). Effect of cytochalasin b, nocodazole and irradiation on migration and internalization of cells and microspheres in tumour cell spheroids. Exp. Cell Res. 166, 370–378.CrossRefGoogle Scholar
  87. Drew, D. A. (1971). Averaged field equations for two-phase media. Stud. Appl. Math. 50, 205–231.zbMATHGoogle Scholar
  88. Drew, D. A. (1976). Two-phase flows: constitutive equations for lift and Brownian motion and some basic flows. Arch. Rat. Mech. Anal. 62, 149–163.zbMATHMathSciNetCrossRefGoogle Scholar
  89. Drew, D. A. and S. L. Passman (1999). Theory of Multicomponent Fluids, New York: Springer.Google Scholar
  90. Drew, D. A. and L. A. Segel (1971). Averaged equations for two-phase flows. Stud. Appl. Math. 50, 205–231.zbMATHGoogle Scholar
  91. Durand, R. E. (1976). Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet. 9, 403–412.Google Scholar
  92. Eddy, H. A. and G. W. Casarett (1972). Development of the vascular system in the hamster malignant neurilemmoma. Microvasc. Res. 6, 63–82.CrossRefGoogle Scholar
  93. Fisher, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugenics 7, 355–369.zbMATHGoogle Scholar
  94. Fitt, A. D., P. D. Howell, J. R. King, C. P. Please and D. W. Schwendeman (2002). Multiphase flow in a roll press nip. Eur. J. Appl. Math. 13, 225–259.MathSciNetCrossRefzbMATHGoogle Scholar
  95. Folkman, J. (1974). Tumor angiogenesis. Adv. Cancer Res. 19, 331–358.CrossRefGoogle Scholar
  96. Folkman, J., P. Cole and S. Zimmerman (1966). Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Ann. Surg. 164, 491–502.Google Scholar
  97. Folkman, J. and M. Hochberg (1973). Self-regulation of growth in three dimensions. J. Exp. Med. 138, 745–753.CrossRefGoogle Scholar
  98. Fowler, A. C. (1997). Mathematical Models in the Applied Sciences, Cambridge University Press.Google Scholar
  99. Franks, S. J., H. M. Byrne, J. R. King, J. C. E. Underwood and C. E. Lewis (2003). Modelling the early growth of ductal carcinoma in situ of the breast. J. Math. Biol. 47, 424–452.MathSciNetCrossRefzbMATHGoogle Scholar
  100. Freyer, J. P., P. L. Schor and A. G. Saponara (1988). Partial purification of a protein-growth inhibitor from multicell spheroids. Biochem. Biophys. Res. Comm. 152, 463–468.CrossRefGoogle Scholar
  101. Froese, G. (1962). The respiration of ascites tumour cells at low oxygen concentrations. Biochim. Biophys. Acta 57, 509–519.CrossRefGoogle Scholar
  102. Fung, Y. C. (1991). What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19, 237–249.MathSciNetGoogle Scholar
  103. Fung, Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissues, New York: Springer.Google Scholar
  104. Gatenby, R. A. (1991). Population ecology issues in tumor growth. Cancer Res. 51, 2542–2547.Google Scholar
  105. Gatenby, R. A. (1995a). Models of tumor-host interactions as competing populations: implications for tumor biology and treatment. J. Theor. Biol. 176, 447–455.CrossRefGoogle Scholar
  106. Gatenby, R. A. (1995b). The potential role of transformation-induced metabolic changes in tumor-host interaction. Cancer Res. 55, 4151–4156.Google Scholar
  107. Gatenby, R. A. (1996a). Altered glucose metabolism and the invasive tumor phenotype: insights provided through mathematical models. Int. J. Oncol. 8, 597–601.Google Scholar
  108. Gatenby, R. A. (1996b). Application of competition theory to tumour growth: implications for tumour biology and treatment. Eur. J. Cancer 32A, 722–726.CrossRefGoogle Scholar
  109. Gatenby, R. A. (1998). Mathematical models of tumor-host interactions. Cancer J. 11, 289–293.Google Scholar
  110. Gatenby, R. A. and E. T. Gawlinski (1996). A reaction-diffusion model of cancer invasion. Cancer Res. 56, 5745–5753.Google Scholar
  111. Gatenby, R. A. and E. T. Gawlinski (2001). Mathematical models of tumor invasion mediated by transformation-induced alteration of microenvironmental pH, in The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity, K. A. Goode and D. J. Chadwick (Eds), Chichester, UK: John Wiley and Sons Ltd.Google Scholar
  112. Gatenby, R. A. and E. T. Gawlinski (2003). The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res. 63, 3847–3854.Google Scholar
  113. Gatenby, R. A. and P. K. Maini (2003). Cancer summed up. Nature 421, 321.CrossRefGoogle Scholar
  114. Gimbrone, M. A., R. H. Aster, R. S. Cotran, J. Corkery, J. H. Jandl and J. Folkman (1969). Preservation of vascular integrity in organs perfused in vitro with a platelet-richmedium. Nature 221, 33–36.Google Scholar
  115. Glass, L. (1973). Instability and mitotic patterns in tissue growth. J. Dyn. Syst. Meas. Control 95, 324–327.Google Scholar
  116. Goldacre, R. J. and B. Sylven (1962). On the access of blood-borne dyes to various tumour regions. Br. J. Cancer 16, 306–321.Google Scholar
  117. Gompertz, G. (1825). On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies. Philos. Trans. R. Soc. London 115, 513–585.Google Scholar
  118. Gray, L. H., A. D. Conger, M. Ebert, S. Hornsey and O. C. A. Scott (1955). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 9, 638–648.Google Scholar
  119. Greene, H. S. N. (1961). Heterologous transplantation of mammalian tumors. J. Exp. Med. 73, 461.CrossRefGoogle Scholar
  120. Greenspan, H. P. (1972). Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 52, 317–340.Google Scholar
  121. Greenspan, H. P. (1974). On the self-inhibited growth of cell cultures. Growth 38, 81–95.Google Scholar
  122. Greenspan, H. P. (1976). On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242.MathSciNetGoogle Scholar
  123. Griffiths, J. D. and A. J. Salsbury (1965). Circulating Cancer Cells, Chicago: Charles C. Thomas, Publishers.Google Scholar
  124. Griffon-Etienne, G., Y. Boucher, C. Brekken, H. D. Suit and R. K. Jain (1999). Taxane-induced apoptotis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59, 3776–3782.Google Scholar
  125. Gurtin, M. E. (1973). A system of equations for age-dependent population diffusion. Stud. Appl. Math. 40, 389–392.Google Scholar
  126. Gurtin, M. E. and R. C. MacCamy (1977). On the diffusion of biological populations. Math. Biosci. 33, 35–49.MathSciNetCrossRefzbMATHGoogle Scholar
  127. Gutmann, R., M. Leunig, J. Feyh, A. E. Goetz, K. Messmer, E. Kastenbauer and R. K. Jain (1992). Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res. 52, 1993–1995.Google Scholar
  128. Haddow, A. (1938). The biological characters of spontaneous tumours of the mouse, with special reference to the rate of growth. J. Path. Bact. 47, 553–565.CrossRefGoogle Scholar
  129. Hahnfeldt, P., D. Panigrahy, J. Folkman and L. Hlatky (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775.Google Scholar
  130. Haji-Karim, M. and J. Carlsson (1978). Proliferation and viability in cellular spheroids of human origin. Cancer Res. 38, 1457–1464.Google Scholar
  131. Harel, L., G. Chatelain and A. Golde (1984). Density dependent inhibition of growth: inhibitory diffusible factors from 3t3 and rous sarcoma virus (rsv)-transformed 3t3 cells. J. Cell Phys. 119, 101–106.CrossRefGoogle Scholar
  132. Hashizume, H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain and D. M. McDonald (2000). Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380.Google Scholar
  133. Helmlinger, G., P. A. Netti, H. D. Lichtenbeld, R. J. Melder and R. K. Jain (1997). Solid stress inhibits the growth of multicellular tumour spheroids. Nat. Biotechnol. 15, 778–783.CrossRefGoogle Scholar
  134. Hickman, J. A., C. S. Potten, A. J. Merritt and T. C. Fisher (1994). Apoptosis and cancer chemotherapy. Philos. Trans. R. Soc. Lond. B 345, 319–325.Google Scholar
  135. Hill, A. V. (1928). The diffusion of oxygen and lactic acid through tissues. R. Soc. Proc. B 104, 39–96.Google Scholar
  136. Hirst, D. G. and J. Denekamp (1979). Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42.Google Scholar
  137. Hirst, D. G., J. Denekamp and B. Hobson (1982). Proliferation kinetics of endothelial and tumour cells in three mouse mammary carcinomas. Cell Tissue Kinet. 15, 251–261.Google Scholar
  138. Hirst, D. G., V. K. Hirst, B. Joiner, V. Prise and K. M. Shaffi (1991). Changes in tumour morphology with alterations in oxygen availability: further evidence for oxygen as a limiting substrate. Br. J. Cancer 64, 54–58.Google Scholar
  139. Hoger, A., T. J. Van Dyke and V. A. Lubarda (2002). On the growth part of deformation gradient for residually-stressed biological materials (submitted).Google Scholar
  140. Hughes, F. and C. McCulloch (1991). Quantification of chemotactic response of quiescent and proliferating fibroblasts in Boyden chambers by computer-assisted image analysis. J. Histochem. Cytochem. 39, 243–246.Google Scholar
  141. Huxley, J. S. (1932). Problems of Relative Growth, New York: The Dial Press.Google Scholar
  142. Huyghe, J. M. and J. D. Janssen (1997). Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35, 793–802.CrossRefzbMATHGoogle Scholar
  143. Imperial Cancer Research Fund, ICRF, 1994.Google Scholar
  144. Iwata, K. K., C. M. Fryling, W. B. Knott and G. J. Todaro (1985). Isolation of tumour cell growth-inhibiting factors from a human rhabdomysarcoma cell line. Cancer Res. 45, 2689–2694.Google Scholar
  145. Jackson, T. L. (2002). Vascular tumor growth and treatment: consequences of polyclonality, competition and dynamic vascular support. J. Math. Biol. 44, 201–226.zbMATHMathSciNetCrossRefGoogle Scholar
  146. Jackson, T. L. and H. M. Byrne (2000). A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38.MathSciNetCrossRefzbMATHGoogle Scholar
  147. Jain, R. K. (1987). Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6, 559–593.CrossRefGoogle Scholar
  148. Jain, R. K. (1994). Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–66.CrossRefGoogle Scholar
  149. Jain, R. K. and L. T. Baxter (1998). Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumour: significance of elevated interstitial pressure. Cancer Res. 48, 7022–7032.Google Scholar
  150. Jain, R. K. and J. Wei (1977). Dynamics of drug transport in solid tumors: distributed parameter model. J. Bioeng. 1, 313–330.Google Scholar
  151. Jiang, W. G. and R. E. Mansel (1996). Progress in anti-invasion and anti-metastasis research and treatment. Int. J. Oncol. 9, 1013–1028.Google Scholar
  152. Jones, A. F., H. M. Byrne, J. S. Gibson and J. W. Dold (2000). A mathematical model of the stress induced during avascular tumour growth. J. Math. Biol. 40, 473–499.MathSciNetCrossRefzbMATHGoogle Scholar
  153. Kastan, M. B., C. E. Canman and C. J. Leonard (1995). P53, cell cycle control and apoptosis: implications for cancer. Cancer Metast. Rev. 14, 3–15.CrossRefGoogle Scholar
  154. Kendall, D. G. (1948). On the role of variable cell generation time in the development of a stochastic birth process. Biometrika 35, 316–330.zbMATHMathSciNetCrossRefGoogle Scholar
  155. Kerr, J. F. R. (1971). Shrinkage necrosis: a distinct mode of cellular death. J. Path. 105, 13–20.CrossRefGoogle Scholar
  156. Kerr, J. F. R., A. H. Wyllie and A. R. Currie (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.Google Scholar
  157. Kerr, J. F. R., J. Searle, B. V. Harmon and C. J. Bishop (1987). Apoptosis, in Perspectives in Mammalian Cell Death, C. S. Potten (Ed.), UK: Oxford University Press.Google Scholar
  158. King, W. E., D. S. Schultz and R. A. Gatenby (1986a). An analysis of systematic tumor oxygenation using multi-region models. Chem. Eng. Commun. 64, 137–153.Google Scholar
  159. King, W. E., D. S. Schultz and R. A. Gatenby (1986b). Multi-region models for describing oxygen tension profiles in human tumors. Chem. Eng. Commun. 47, 73–91.Google Scholar
  160. Kleinerman, J. and L. A. Liotta (1977). Release of tumor cells, in Cancer Invasion and Metastasis: Biologic Mechanisms and Therapy, S. B. Day et al. (Eds), New York: Raven Press.Google Scholar
  161. Koike, A. (1964). Mechanism of blood-borne metastases. i. Some factors affecting lodgment and growth of tumour cells in the lungs. Cancer 17, 450–460.Google Scholar
  162. Kolmogorov, A., A. Petrovsky and N. Piscounoff (1988). Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, in Dynamics of Curved Fronts, Boston: Academic Press.Google Scholar
  163. Kunz-Schughart, L. A., M. Kreutz and R. Knuechel (1998). Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 79, 1–23.CrossRefGoogle Scholar
  164. Kuo, T. H., T. Kubota, M. Watanabe, T. Furukawa, T. Teramoto, K. Ishibiki, M. Kitajima, A. R. Moosa, S. Penman and R. M. Hoffman (1995). Liver colonization competence governs colon cancer metastasis. Proc. Natl. Acad. Sci. USA 92, 12085–12089.Google Scholar
  165. Lai, W. M., J. S. Hou and V. C. Mow (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258.Google Scholar
  166. Lai, W. M., V. C. Mow and W. Zhu (1993). Constitutive modelling of articular cartilage and biomacromolecular solutions. Trans. ASME 115, 474–480.Google Scholar
  167. Laird, A. K. (1964). Dynamics of tumor growth. Br. J. Cancer 18, 490–502.Google Scholar
  168. Laird, A. K. (1965). Dynamics of relative growth. Growth 29, 249–263.Google Scholar
  169. Laird, A. K., S. A. Tyler and A. D. Barton (1965). Dynamics of normal growth. Growth 21, 233–248.Google Scholar
  170. Landman, K. A. and C. P. Please (2001). Tumour dynamics and necrosis: surface tension and stability. IMA J. Math. Appl. Med. Biol. 18, 131–158.zbMATHGoogle Scholar
  171. Landry, J., J. P. Freyer and R. M. Sutherland (1981). Shedding of mitotic cells from the surface of multicell spheroids during growth. J. Cell. Physiol. 106, 23–32.CrossRefGoogle Scholar
  172. Landry, J., J. P. Freyer and R. M. Sutherland (1982). A model for the growth of multicellular spheroids. Cell Tissue Kinet. 15, 585–594.Google Scholar
  173. Leu, A. J., D. A. Berk, A. Lymboussaki, K. Alitalo and R. K. Jain (2000). Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60, 4324–4327.Google Scholar
  174. Leunig, M., F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer and R. K. Jain (1992). Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adnocarcinoma ls174t in scid mice. Cancer Res. 52, 6553–6560.Google Scholar
  175. Levine, E. L. et al. (1995). Apoptosis, intrinsic radiosensitivity and prediction of radiotherapy response in cervical carcinoma. Radiother. Oncol. 37, 1–9.CrossRefGoogle Scholar
  176. Liapis, A. I., G. G. Lipscomb and O. K. Crossier (1982). A model of oxygen diffusion in absorbing tissue. Math. Modelling 3, 83–92.MathSciNetCrossRefzbMATHGoogle Scholar
  177. Lin, S. H. (1976). Oxygen diffusion in a spheroid cell with non-linear uptake kinetics. J. Theor. Biol. 60, 449–457.CrossRefGoogle Scholar
  178. Liotta, L. A. and C. DeLisi (1977). Method for quantitating tumor cell removal and tumor cell-invasive capacity in experimental metastases. Cancer Res. 37, 4003–4008.Google Scholar
  179. Liotta, L. A., J. Kleinerman and G. M. Saidel (1974a). Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34, 997–1004.Google Scholar
  180. Liotta, L. A., J. Kleinerman and G. M. Saidel (1974b). Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34, 997–1004.Google Scholar
  181. Liotta, L. A., G. M. Saidel and J. Kleinerman (1974c). Diffusion model of tumor vascularization and growth. Bull. Math. Biol. 34, 117–128.Google Scholar
  182. Liotta, L. A., J. Kleinerman and G. M. Saidel (1976a). The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36, 889–894.Google Scholar
  183. Liotta, L. A., G. M. Saidel and J. Kleinerman (1976b). Stochastic model of metastases formation. Biometrics 535–550.Google Scholar
  184. Liotta, L. A., G. M. Saidel, J. Kleinerman and C. DeLisi (1977). Micrometastasis therapy: theoretical concepts, in Cancer Invasion and Metastasis: Biologic Mechanisms and Therapy, S. B. Day et al. (Eds), New York: Raven Press.Google Scholar
  185. Loewenstein, W. R. (1981). Junctional intercellular communication: the cell-to-cell membrane channel. Physiol. Rev. 61, 829–889.Google Scholar
  186. Lomer, E. (1883). Zur frage der heilbarkeit des carcinoms. Z. Geburtsh. Gynaek. 9, 277.Google Scholar
  187. Lubarda, V. A. and A. Hoger (2002). On the mechanics of solids with a growing mass. Int. J. Solids Structures 39, 4627–4664.CrossRefzbMATHGoogle Scholar
  188. Lubkin, S. R. and T. Jackson (2002). Multiphase mechanics of capsule formation in tumors. J. Biomech. Eng. 124, 237–243.CrossRefGoogle Scholar
  189. Lynch, M. P., S. Nawaz and L. E. Gerschenson (1986). Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen. Proc. Natl. Acad. Sci. 83, 4784–4788.CrossRefGoogle Scholar
  190. MacArthur, B. D. and C. P. Please (2003). Residual stress generation and necrosis formation in multi-cell tumour spheroids. J. Math. Biol. (submitted).Google Scholar
  191. Maggelakis, S. A. and J. A. Adam (1990). Mathematical model of prevascular growth of a spherical carcinoma. Math. Comput. Modelling 13, 23–38.CrossRefzbMATHGoogle Scholar
  192. Mantzaris, N., S. Webb and H. G. Othmer (2003). Mathematical modelling of tumour-induced angiogenesis. J. Math. Biol. (in press).Google Scholar
  193. Marchant, B. P., J. Norbury and A. J. Perumpanani (2000). Traveling shock waves arising in a model of malignant invasion. SIAM J. Appl. Math. 60, 463–476.MathSciNetCrossRefzbMATHGoogle Scholar
  194. Marchant, B. P., J. Norbury and J. A. Sherratt (2001). Travelling wave solutions to a haptotaxis-dominated model of malignant invasion. Nonlinearity 14, 1653–1671.MathSciNetCrossRefzbMATHGoogle Scholar
  195. Martin, G. R. and R. K. Jain (1994). Noninvasive measurement for interstitial pH profiles in normal and neoplastic tissue using fluorescent ration imaging microscopy. Cancer Res. 54, 5670–5674.Google Scholar
  196. Mayneord, W. V. (1932). On a law of growth of Jensen’s rat sarcoma. Am. J. Cancer 16, 841–846.Google Scholar
  197. McDougall, S. R., A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt (2002). Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702.CrossRefGoogle Scholar
  198. McElwain, D. L. S. (1978). A reexamination of oxygen diffusion in a spheroid cell with Michaelis-Menten oxygen uptake kinetics. J. Theor. Biol. 71, 255–267.CrossRefGoogle Scholar
  199. McElwain, D. L. S., R. Callcott and L. E. Morris (1979). A model of vascular compression in solid tumours. J. Theor. Biol. 78, 405–415.CrossRefGoogle Scholar
  200. McElwain, D. L. S. and L. E. Morris (1978). Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth. Math. Biosci. 39, 147–157.CrossRefGoogle Scholar
  201. McElwain, D. L. S. and G. J. Pettet (1993). Cell migration in multicell spheroids: swimming against the tide. Bull. Math. Biol. 55, 655–674.CrossRefzbMATHGoogle Scholar
  202. McElwain, D. L. S. and P. J. Ponzo (1977). A model for the growth of a solid tumor with non-uniform oxygen consumption. Math. Biosci. 35, 267–279.CrossRefzbMATHGoogle Scholar
  203. Miyasaka, M. (1995). Cancer metastasis and adhesion molecules. Clin. Orth. Rel. Res. 312, 10–18.Google Scholar
  204. Moore, J. V., H. A. Hopkins and W. B. Looney (1983). Response of cell populations in tumor cords to a single dose of cyclophosphamide or radiation. Eur. J. Cancer Clin. Oncol. 19, 73–79.CrossRefGoogle Scholar
  205. Moore, J. V., H. A. Hopkins and W. B. Looney (1984). Tumour-cord parameters in two rat hepatomas that differ in their radiobiological oxygenation status. Radiat. Envir. Biophys. 23, 213–222.CrossRefGoogle Scholar
  206. Moore, J. V., P. S. Haselton and C. M. Buckley (1985). Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br. J. Cancer 51, 407–413.Google Scholar
  207. Mottram, J. C. (1936). Factor of importance in radiosensitivity of tumors. Br. J. Radiol. 9, 606–614.CrossRefGoogle Scholar
  208. Mow, V. C., J. S. Hou, J. M. Owens and A. Ratcliffe (1990a). Biphasic and quasilinear viscoelastic theories for hydrated soft tissues, in Biomechanics of Diarthrodial Joints, New York: Springer.Google Scholar
  209. Mow, V. C., J. S. Hou, J. M. Owens and A. Ratcliffe (1990b). Biphasic and quasilinear viscoelastic theories for hydrated soft tissues, in Biomechanics of Diarthrodial Joints, New York: Springer.Google Scholar
  210. Mueller-Klieser, W. F. and R. M. Sutherland (1982). Oxygen tensions in multicell spheroids of two cell lines. Br. J. Cancer 45, 256–263.Google Scholar
  211. Mueller-Klieser, W. (2000). Tumor biology and experimental therapeutics. Crit. Rev. Oncol. Hematol. 36, 123–139.Google Scholar
  212. Murray, J. D. (2002). Mathematical Biology, I: An Introduction, Berlin: Springer.Google Scholar
  213. Nagle, R. B., J. D. Knox, C. Wolf, G. T. Bowden and A. E. Cress (1994). Adhesion molecules, extracellular matrix and proteases in prostrate carcinoma. J. Cell. Biochem. Suppl. 19, 232–237.Google Scholar
  214. Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak and R. K. Jain (1995). Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 55, 5451–5458.Google Scholar
  215. Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak and R. K. Jain (1997). Macro-and microscopic fluid transport in living tissues: application to solid tumors. AIChE J. 43, 818–834.CrossRefGoogle Scholar
  216. Ng, I. O. L., E. C. S. Lai, M. M. T. Lai and S. T. Fan (1992). Tumor encapsulation in hepatocellular carcinoma: a pathological study of 198 cases. Cancer (N.Y.) 70, 395–413.Google Scholar
  217. Nor, J. E., J. Christensen, J. Liu, M. Peters, D. J. Mooney, R. M. Strieter and P. J. Polverini (2001). Up-regulation of bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res. 61, 2183–2188.Google Scholar
  218. Olson, J. S. (2002). Bathsheba’s Breast: Women, Cancer and History, Baltimore: Johns Hopkins University Press.Google Scholar
  219. Orme, M. E. and M. A. J. Chaplain (1996). A mathematical model of vascular tumour growth and invasion. Math. Comput. Modelling 23, 43–60.MathSciNetCrossRefzbMATHGoogle Scholar
  220. Osgood, E. E. (1957). A unifying concept of the etiology of the leukemias, lymphomas, and cancers. J. Natl. Cancer Inst. 18, 155–166.Google Scholar
  221. Palka, J., B. Adelmann-Grill, P. Francz and K. Bayreuther (1996). Differentiation stage and cell cycle position determine the chemotactic response of fibroblasts. Folia Histochem. Cytobiol. 34, 121–127.Google Scholar
  222. Panetta, J. C. and J. A. Adam (1995). A mathematical model of cycle-specific chemotherapy. Math. Comput. Modelling 22, 67–82.MathSciNetCrossRefzbMATHGoogle Scholar
  223. Passman, S. L. and J. W. Nunziato (1984). A theory of multiphase mixtures, in Rational Thermodynamics, C. Truesdell (Ed.), New York: Springer.Google Scholar
  224. Perumpanani, A. J. Malignant and morphogenetic waves, PhD thesis, Oxford University, Hilary Term, 1996.Google Scholar
  225. Perumpanani, A. J. and H. M. Byrne (1999). Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 35, 1274–1280.CrossRefGoogle Scholar
  226. Perumpanani, A. J. and J. Norbury (1999). Numerical interactions of random and directed motility during cancer invasion. Math. Comput. Modelling 30, 123–133.MathSciNetCrossRefzbMATHGoogle Scholar
  227. Perumpanani, A. J., J. A. Sherratt, J. Norbury and H. M. Byrne (1996). Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16, 209–221.Google Scholar
  228. Perumpanani, A. J., J. A. Sherratt, J. Norbury and H. M. Byrne (1999). A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Physica D 126, 145–159.CrossRefGoogle Scholar
  229. Pettet, G. J., D. L. S. McElwain and J. Norbury (2000). Lotka-Volterra equations with chemotaxis: walls, barriers and travelling waves. IMA J. Math. Appl. Med. Biol. 17, 395–413.zbMATHGoogle Scholar
  230. Pettet, G. J., C. P. Please, M. J. Tindall and D. L. S. McElwain (2001). The migration of cells in multicell tumor spheroids. Bull. Math. Biol. 63, 231–257.CrossRefGoogle Scholar
  231. Pioletti, D. P., L. R. Rakotomanana, J.-F. Benvenuti and P.-F. Leyvraz (1998). Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J. Biomech. 31, 753–757.CrossRefGoogle Scholar
  232. Pisani, P., F. Bray and D. M. Parkin (2001). Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int. J. Cancer 97, 72–81.CrossRefGoogle Scholar
  233. Please, C. P., G. J. Pettet and D. L. S. McElwain (1998). A new approach to modelling the formation of necrotic regions in tumours. Appl. Math. Lett. 11, 89–94.MathSciNetCrossRefzbMATHGoogle Scholar
  234. Please, C. P., G. J. Pettet and D. L. S. McElwain (1999). Avascular tumour dynamics and necrosis. Math. Models Methods Appl. Sci 9, 569–579.CrossRefzbMATHGoogle Scholar
  235. Porter, R. (1997). The Greatest Benefit to Mankind: A Medical History of Humanity from Antiquity to the Present, London: Harper Collins Publishers.Google Scholar
  236. Preziosi, L. and A. Farina (2002). On Darcy’s law for growing porous media. Int. J. Non-Linear Mechanics 37, 485–491.CrossRefzbMATHGoogle Scholar
  237. Raff, M. C. (1992). Social controls on cell survival and cell death. Nature 356, 397–400.CrossRefGoogle Scholar
  238. Rajagopal, K. R. and A. R. Srinivasa (1998). Mechanics of the inelastic behavior of materials. i. Theoretical underpinnings. Int. J. Plast. 14, 945–967.CrossRefzbMATHGoogle Scholar
  239. Rajagopal, K. R. and L. Tao (1995). Mechanics of Mixtures, Singapore: World Scientific.zbMATHGoogle Scholar
  240. Ritchie, A. C. (1970). The classification morphology and behaviour of tumours, in General Pathology, 4th edn, H. E. W. Florey (Ed.), Lloyd-Luke.Google Scholar
  241. Robbins, S. L., R. S. Cotran and V. Kuman (1984). Neoplasia, in Pathologic Basis of Disease, 3rd edn, W. B. Saunders (Ed.), Philadelphia: Saunders Co.Google Scholar
  242. Robertson, T. B. (1923). The Chemical Basis of Growth and Senescence, Philadelphia: J. B. Lippincott Co.Google Scholar
  243. Rodriguez, E. K., A. Hoger and A. D. McCulloch (1994). Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467.CrossRefGoogle Scholar
  244. Ruoslahti, E. (1996). How cancer spreads. Sci. Am. 42–47.Google Scholar
  245. Ruoslahti, E. (2002). Specialization of tumour vasculature. Nat. Rev. Cancer 2, 83–90.CrossRefGoogle Scholar
  246. Saidel, G. M., L. A. Liotta and J. Kleinerman (1976). System dynamics of a metastatic process from an implanted tumor. J. Theor. Biol. 56, 417–434.Google Scholar
  247. Schultz, D. S. and W. E. King (1987). On the analysis of oxygen diffusion in biological systems. Math. Biosci. 83, 179–190.CrossRefzbMATHGoogle Scholar
  248. Seftor, R. E., E. A. Seftor, K. R. Gehlsen and W. G. Stetler-Stevenson (1992). Role of alpha-v-beta-3 integrin in human melanoma cell invasion. Proc. Natl. Acad. Sci. USA 89, 1557–1561.CrossRefGoogle Scholar
  249. Shannon, M. A. and B. Rubinsky (1992). The effect of tumour growth on the stress distribution in tissue. Adv. Biol. Heat Mass Transfer 231, 35–38.Google Scholar
  250. Sherratt, J. A. (1990). Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. Lond. B 241, 29–36.Google Scholar
  251. Sherratt, J. A. (1993). Cellular growth and travelling waves of cancer. SIAM Appl. Math. 53, 1713–1730.zbMATHMathSciNetCrossRefGoogle Scholar
  252. Sherratt, J. A. (2000). Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. Lond. A. 53, 2365–2386.MathSciNetGoogle Scholar
  253. Sherratt, J. A. and M. A. J. Chaplain (2001). A new mathematical model for avascular tumour growth. J. Math. Biol. 43, 291–312.MathSciNetCrossRefzbMATHGoogle Scholar
  254. Shymko, R. M. and L. Glass (1976). Cellular and geometric control of tissue growth and mitotic instability. J. Theor. Biol. 63, 355–374.CrossRefGoogle Scholar
  255. Skalak, R. (1981). Growth as a finite displacement field, in Proceedings of the IUTAM Symposium on Finite Elasticity, The Hague, D. E. Carlson and R. T. Shield (Eds), Martinus Nijhoff Publishers, pp. 347–355.Google Scholar
  256. Skalak, R., G. Dasgupta and M. Moss (1982). Analytical description of growth. J. Theor. Biol. 94, 555–577.MathSciNetCrossRefGoogle Scholar
  257. Skalak, R., S. Zargaryan, R. K. Jain, P. A. Netti and A. Hoger (1996). Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34, 889–914.zbMATHGoogle Scholar
  258. Sleeman, B. D. and H. R. Nimmo (1998). Fluid transport in vascularized tumours and metastasis. IMA J. Math. Appl. Med. Biol. 15, 53–63.zbMATHGoogle Scholar
  259. Snijders, H., J. Huyghe, P. Willems, M. Drost, J. Janssen and A. Huson (1992). A mixture approach to the mechanics of the human intervertebral disc, in Mechanics of Swelling, T. K. Karalis (Ed.), Berlin, Heidelberg: Springer.Google Scholar
  260. Stainsby, W. N. and A. B. Otis (1961). Blood flow, blood oxygen tension, oxygen uptake and oxygen transport in skeletal muscle. Am. J. Physiol. 201, 117–122.Google Scholar
  261. Stetler-Stevenson, W. G., S. Aznavoorian and L. A. Liotta (1993). Tumor cell interactions with the extra-cellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541–573.CrossRefGoogle Scholar
  262. Stohrer, M., Y. Boucher, M. Stangassinger and R. K. Jain (2000). Oncotic pressure in solid tumors is elevated. Cancer Res. 60, 4251–4255.Google Scholar
  263. Sutherland, R. M. (1988). Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184.Google Scholar
  264. Sutherland, R. M. and R. E. Durand (1973). Hypoxic cells in an in vitro tumour model. Int. J. Radiat. Biol. 23, 235–246.Google Scholar
  265. Sutherland, R. M., J. A. McCredie and W. R. Inch (1971). Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl. Cancer Inst. 46, 113–120.Google Scholar
  266. Swan, G. W. (1981). Lecture Notes in Biomathematics, Vol. 42, Berlin: Springer.Google Scholar
  267. Taber, L. A. (1995). Biomechanics of growth, remodeling and morphogenesis. Appl. Mech. Rev. 48, 487–545.CrossRefGoogle Scholar
  268. Taber, L. A. and D. W. Eggers (1996). Theoretical study of stress-modulated growth in the aorta. J. Theor. Biol. 180, 343–357.CrossRefGoogle Scholar
  269. Taber, L. A. and R. Perucchio (2000). Modeling heart development. J. Elasticity 61, 165–197.MathSciNetCrossRefzbMATHGoogle Scholar
  270. Takahashi, M. (1966). Theoretical basis for cell cycle analysis. i. Labelled mitosis wave method. J. Theor. Biol. 13, 202–211.CrossRefGoogle Scholar
  271. Takahashi, M. (1968). Theoretical basis for cell cycle analysis. ii. Further studies on labelled mitosis wave method. J. Theor. Biol. 18, 195.CrossRefGoogle Scholar
  272. Tannock, I. F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273.Google Scholar
  273. Tannock, I. F. and A. Howes (1973). The response of viable tumor cords to a single dose of radiation. Radiat. Res. 55, 477–486.Google Scholar
  274. Thames, H. D., A. C. C. Ruifrok, L. Milas, N. Hunter, K. A. Mason, N. H. A. Terry and R. A. White (1996). Accelerated repopulation during fractionated-irradiation of a murine ovarian carcinoma: down-regulation of apoptosis as a possible mechanism. Int. J. Radiat. Oncol. Biol. Phys. 35, 951–962.CrossRefGoogle Scholar
  275. Thomlinson, R. H. and L. H. Gray (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549.Google Scholar
  276. Thompson, K. E. and H. M. Byrne (1999). Modelling the internalization of labelled cells in tumour spheroids. Bull. Math. Biol. 61, 601–623.CrossRefGoogle Scholar
  277. Tracqui, P., G. C. Cruywagen, D. E. Woodward, G. T. Bartoo, J. D. Murray and E. G. Alvord (1995). A mathematical model of glioma growth—the effect of chemotherapy on spatiotemporal growth. Cell Prolif. 28, 17–31.Google Scholar
  278. Truesdell, C. and W. Noll (1965). The non-linear field theories of mechanics, in Handbuch der Physik, Flugge (Ed.), Vol. III/III, Berlin: Springer.Google Scholar
  279. Truesdell, C. and R. Toupin (1960). The classical field theories, in Handbuch der Physik, S. Flugge (Ed.), vol. III/I, Berlin: Springer.Google Scholar
  280. Tyzzer, E. E. (1913). Factors in production and growth of tumour metastasis. J. Med. Res. 28, 309–332.Google Scholar
  281. Vaidya, V. G. and F. J. Alexandro (1982). Evaluation of some mathematical models for tumour growth. Int. J. Biomed. Comput. 13, 19–35.MathSciNetCrossRefGoogle Scholar
  282. Van Dyke, T. J. and A. Hoger (2001). Rotations in the theory of growth for soft biological materials, in Proceedings of the 2001 ASME Bioengineering Conference, BED-Vol. 50, USA, pp. 647–648.Google Scholar
  283. Van Lancker, M., C. Goor, R. Sacre, J. Lamote, S. Van Belle, N. De Coene, A. Roelstraete and G. Storme (1995). Patterns of axillary lymph node metastasis in breast cancer. Am. J. Clin. Oncol. 18, 267–272.Google Scholar
  284. Volpe, J. G. P. (1988). Genetic instability of cancer: why a metastatic tumor is unstable and a benign tumor is stable. Cancer Genet. Cytogenet. 14, 125–134.CrossRefGoogle Scholar
  285. von Bertalanffy, L. (1960). Fundamental Aspects of Normal and Malignant Growth, W. W. Nowinsky (Ed.), Amsterdam: Elsevier, pp. 137–259 (Chapter 2).Google Scholar
  286. Warburg, O. (1930). The Metabolism of Tumors, London: Constable Press.Google Scholar
  287. Ward, J. P. (1997). Mathematical modelling of avascular tumour growth, PhD thesis, Nottingham University.Google Scholar
  288. Ward, J. P. and J. R. King (1997). Mathematical modelling of avascular tumour growth. IMA J. Math. Appl. Med. Biol. 14, 36–69.Google Scholar
  289. Ward, J. P. and J. R. King (1999a). Mathematical modelling of avascular tumour growth, ii. Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211.zbMATHGoogle Scholar
  290. Ward, J. P. and J. R. King (1999b). Mathematical modelling of the effects of mitotic inhibitors on avascular tumour growth. J. Theor. Med. 1, 287–311.zbMATHGoogle Scholar
  291. Ward, J. P. and J. R. King (2000). Modelling the effect of cell shedding on avascular tumour growth. J. Theor. Med. 2, 155–174.zbMATHGoogle Scholar
  292. Ward, J. P. and J. R. King (2003). Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math. Biosci. 181, 177–207.MathSciNetCrossRefzbMATHGoogle Scholar
  293. Webb, S. D., J. A. Sherratt and R. G. Fish (1999a). Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model. Clin. Exp. Metastasis 17, 397–407.CrossRefGoogle Scholar
  294. Webb, S. D., J. A. Sherratt and R. G. Fish (1999b). Mathematical modelling of tumour acidity: regulation of intracellular pH. J. Theor. Biol. 196, 237–250.CrossRefGoogle Scholar
  295. Wein, L. M., J. T. Wu, A. G. Ianculescu and R. K. Puri (2002). A mathematical model of the impact of infused targeted cytotoxic agents on brain tumours: implications for detection, design and delivery. Cell Prolif. 35, 343–361.CrossRefGoogle Scholar
  296. Weiss, L. (2000). The morphologic documentation of clinical progression, invasion metastasis—staging. Cancer Metastasis Rev. 19, 303–313.CrossRefGoogle Scholar
  297. Wette, R., I. N. Katz and E. Y. Rodin (1974a). Stochastic processes for solid tumor kinetics i. Surface-regulated growth. Math. Biosci. 19, 231–255.CrossRefzbMATHGoogle Scholar
  298. Wette, R., I. N. Katz and E. Y. Rodin (1974b). Stochastic processes for solid tumor kinetics ii. Diffusion-regulated growth. Math. Biosci. 21, 311–338.CrossRefzbMATHGoogle Scholar
  299. Winsor, C. P. (1932). The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. USA 1–7.Google Scholar
  300. Yuhas, J. M. and A. P. Li (1978). Growth fraction as the major determinant of multicellular tumor spheroid growth rates. Cancer Res. 38, 1528–1532.Google Scholar
  301. Yuhas, J. M., A. E. Tarleton and K. B. Molzen (1978). Multicellular tumor spheroid formation by breast cancer cells isolated from different sites. Cancer Res. 38, 2486–2491.Google Scholar
  302. Znati, C. A., M. Rosenstein, Y. Boucher, M. W. Epperly, W. D. Bloomer and R. K. Jain (1996). Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft. Cancer Res. 56, 964–968.Google Scholar

Copyright information

© Society for Mathematical Biology 2004

Authors and Affiliations

  1. 1.School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations