Skip to main content
Log in

Seasonally limited host supply generates microparasite population cycles

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cycles in biological populations have been shown to arise from enemy-victim systems, delayed density dependence, andmaternal effects. In an initial effort to model the year-to-year dynamics of natural populations of entomopathogenic nematodes and their insect hosts, we find that a simple, nonlinear, mechanistic model produces large amplitude, period two population cycles. The cycles are generated by seasonal dynamics within semi-isolated populations independently of inter-annual feedback in host population numbers, which differs from previously studied mechanisms. The microparasites compete for a fixed number of host insect larvae. Many nematodes at the beginning of the year quickly eliminate the pool of small hosts, and few nematodes are produced for the subsequent year. Conversely, initially small nematode populations do not over-exploit the host population, so the surviving hosts grow to be large and produce many nematodes that survive to the following year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billings, L. and I. B. Schwartz (2002). Exciting chaos with noise: unexpected dynamics in epidemic outbreaks. J. Math. Biol. 44, 31–48.

    Article  MathSciNet  Google Scholar 

  • Bjørnstad, O. N. and B. T. Grenfell (2001). Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638–643.

    Article  Google Scholar 

  • Blasius, B., A. Huppert and L. Stone (1999). Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354–359.

    Article  Google Scholar 

  • Briggs, C. J. and H. C. J. Godfray (1996). The dynamics of insect-pathogen interactions in seasonal environments. Theor. Popul. Biol. 50, 149–177.

    Article  Google Scholar 

  • Briggs, C. J., R. M. Nisbet and W. W. Murdoch (1999). Delayed feedback and multiple attractors in a host-parasitoid system. J. Math. Biol. 38, 317–345.

    Article  MathSciNet  Google Scholar 

  • Campbell, J. F., A. M. Koppenhöfer, H. K. Kaya and B. Chinnasri (1999). Are there temporarily non-infectious dauer stages in entomopathogenic nematode populations: a test of the phased infectivity hypothesis. Parasitology 118, 499–508.

    Article  Google Scholar 

  • Earn, D. J. D., P. Rohani, B. M. Bolker and B. T. Grenfell (2000). A simple model for complex dynamical transitions in epidemics. Science 287, 667–670.

    Article  Google Scholar 

  • Fenton, A., R. Norman, J. P. Fairbairn and P. J. Hudson (2000). Modelling the efficacy of entomopathogenic nematodes in the regulation of invertebrate pests in glasshouse crops. J. Appl. Ecol. 37, 309–320.

    Article  Google Scholar 

  • Fenton, A., R. Norman, J. P. Fairbairn and P. J. Hudson (2001). Evaluating the efficacy of entomopathogenic nematodes for the biological control of crop pests: a nonequilibrium approach. Am. Nat. 158, 408–425.

    Article  Google Scholar 

  • Finkenstadt, B. F. and B. T. Grenfell (2000). Time series modelling of childhood diseases: a dynamical systems approach. J. R. Statis. Soc. Ser. C-Appl. Stat. 49, 187–205.

    Article  MathSciNet  Google Scholar 

  • Gamarra, J. G. P. and R. V. Sole (2002). Biomass-diversity responses and spatial dependencies in disturbed tallgrass prairies. J. Theor. Biol. 215, 469–480.

    Article  Google Scholar 

  • Grenfell, B. T., K. Wilson, B. F. Finkenstaedt, T. N. Coulson, S. Murray, S. D. Albon, J. M. Pemberton, T. H. Clutton-Brock and M. J. Crawely (1998). Noise and determinism in synchronized sheep dynamics. Nature 394, 674–677.

    Article  Google Scholar 

  • Hanski, I. A. (1999). Metapopulation Ecology, Oxford Series in Ecology and Evolution, Oxford, New York: Oxford University Press.

    Google Scholar 

  • Hanski, I. A. and E. Korpimaki (1995). Microtine rodent dynamics in northern Europe: parameterized models for the predator-prey interaction. Ecology 76, 840–850.

    Article  Google Scholar 

  • Hastings, A. and S. Harrison (1994). Metapopulation dynamics and genetics. Annu. Rev. Ecol. Syst. 25, 167–188.

    Article  Google Scholar 

  • Hastings, A., C. L. Hom, S. Ellner, P. Turchin and H. C. J. Godfray (1993). Chaos in ecology: is mother nature a strange attractor? Annu. Rev. Ecol. Syst. 24, 1–33.

    Google Scholar 

  • Higgins, K., A. Hastings, J. N. Sarvela and L. W. Botsford (1997). Stochastic dynamics and deterministic skeletons: population behavior of dungeness crab. Science 276, 1431–1435.

    Article  Google Scholar 

  • Hominick, W. M. (2002). Biogeography, in Entomopathogenic Nematology, R. Gaugler (Ed.), New York: CABI Publishing, pp. 115–145.

    Google Scholar 

  • Karlin, S. and J. McGregor (1972). Polymorphisms for genetic and ecological systems with weak coupling. Theor. Popul. Biol. 3, 210–238.

    Article  MathSciNet  Google Scholar 

  • Kaya, H. K. and R. Gaugler (1993). Entomopathogenic nematodes, in Annual Review of Entomology, Palo Alto: Annual Reviews Inc., pp. 181–206.

    Google Scholar 

  • Kendall, B. E., C. J. Briggs, W. W. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nisbet and S. N. Wood (1999). Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80, 1789–1805.

    Article  Google Scholar 

  • Koppenhöfer, A. M., B. A. Jaffee, A. E. Muldoon, D. R. Strong and H. K. Kaya (1996). Effect of nematode-trapping fungi on an entomopathogenic nematode originating from the same field site in California. J. Invertebr. Pathol. 68, 246–252.

    Article  Google Scholar 

  • May, R. M. and G. F. Oster (1976). Bifurcations and dynamic complexity in simple ecological models. Am. Naturalist 110, 573–599.

    Article  Google Scholar 

  • Mills, N. J. and W. M. Getz (1996). Modelling the biological control of insect pests: a review of host-parasitoid models. Ecolo. Modelling 92, 121–143.

    Article  Google Scholar 

  • Nicholson, A. J. and V. A. Bailey (1935). The balance of animal populations. Proc. Zoological Soc. London 3, 551–598.

    Google Scholar 

  • Polis, G. A. and D. R. Strong (1996). Food web complexity and community dynamics. Am. Nat. 147, 813–846.

    Article  Google Scholar 

  • Roberts, M. G. and J. A. P. Heesterbeck (1998). A simple parasite model with complicated dynamics. J. Math. Biol. 37, 272–290.

    Article  MathSciNet  Google Scholar 

  • Stenseth, N. C. (1999). Population cycles in voles and lemmings: density dependence and phase dependence in a stochastic world. Oikos 87, 427–461.

    Google Scholar 

  • Strong, D. R. (1999). Predator control in terrestrial ecosystems: the underground food chain of bush lupine, in Herbivores, Between Plants and Predators, H. Olff, V. K. Brown and R. H. Drent (Eds), Oxford: Blackwell Science, pp. 577–602.

    Google Scholar 

  • Strong, D. R. (2002). Populations or entomopathogenic nematodes in food webs, in Entomopathogenic Nematology, Chapter 11, R. Gaugler (Ed.), NY: CABI Publishing.

    Google Scholar 

  • Strong, D. R., H. K. Kaya, A. V. Whipple, A. L. Child, S. Kraig, M. Bondonno, K. Dyer and J. L. Maron (1996). Entomopathogenic nematodes: natural enemies of root-feeding caterpillars on bush lupine. Oecologia 108, 167–173.

    Article  Google Scholar 

  • Strong, D. R., A. V. Whipple, A. L. Child and B. Dennis (1999). Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology (Washington DC) 80, 2750–2761.

    Google Scholar 

  • Stuart, R. J. and R. Gaugler (1994). Patchiness in populations of entomopathogenic nematodes. J. Invertebr. Pathol. 64, 39–45.

    Article  Google Scholar 

  • Turchin, P. and S. P. Ellner (2000). Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 81, 3099–3116.

    Article  Google Scholar 

  • Wagner D. L. (1985). The biosystematics of Hepialus F. s. lato, with special emphasis on the californicus-hectoides species group. PhD Thesis, U.C. Berkeley.

  • Westerman, P. R. (1998). Penetration of the entomopathogenic nematode heterorhabditis spp into host insects at 9 and 20°C. J. Invertebr. Pathol. 72, 197–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Dugaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dugaw, C.J., Hastings, A., Preisser, E.L. et al. Seasonally limited host supply generates microparasite population cycles. Bull. Math. Biol. 66, 583–594 (2004). https://doi.org/10.1016/j.bulm.2003.09.005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.09.005

Keywords

Navigation