Skip to main content
Log in

Qualitative simulation of genetic regulatory networks using piecewise-linear models

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In order to cope with the large amounts of data that have become available in genomics, mathematical tools for the analysis of networks of interactions between genes, proteins, and other molecules are indispensable. We present a method for the qualitative simulation of genetic regulatory networks, based on a class of piecewise-linear (PL) differential equations that has been well-studied in mathematical biology. The simulation method is well-adapted to state-of-the-art measurement techniques in genomics, which often provide qualitative and coarse-grained descriptions of genetic regulatory networks. Given a qualitative model of a genetic regulatory network, consisting of a system of PL differential equations and inequality constraints on the parameter values, the method produces a graph of qualitative states and transitions between qualitative states, summarizing the qualitative dynamics of the system. The qualitative simulation method has been implemented in Java in the computer tool Genetic Network Analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alur, R., C. Belta, F. Ivančíc V. Kumar, M. Mintz, G. J. Pappas, H. Rubin and J. Schlug (2001). Hybrid modeling and simulation of biomolecular networks, in Hybrid Systems: Computation and Control (HSCC 2001), Lecture Notes in Computer Science 2034, M. D. Di Benedetto and A. Sangiovanni-Vincentelli (Eds), Berlin: Springer, pp. 19–32.

    Google Scholar 

  • Alves, R. and M. A. Savageau (2000a). Comparing systemic properties of ensembles of biological networks by graphical and statistical methods. Bioinformatics 16, 527–533.

    Article  Google Scholar 

  • Alves, R. and M. A. Savageau (2000b). Systemic properties of ensembles of metabolic networks: application of graphical and statistical methods to simple unbranched pathways. Bioinformatics 16, 534–547.

    Article  Google Scholar 

  • Barkai, N. and S. Leibler (1997). Robustness in simple biochemical networks. Nature 387, 913–917.

    Article  Google Scholar 

  • Becskei, A. and L. Serrano (2000). Engineering stability in gene networks by autoregulation. Nature 405, 590–591.

    Article  Google Scholar 

  • Ben-Hur, A. and H. T. Siegelmann (2001). Computation in gene networks, in Machines, Computations, and Universality: Third International Conference (MCU 2001), Lecture Notes in Computer Science 2055, M. Margenstern and Y. Rogozhin (Eds), Berlin: Springer, pp. 11–24.

    Google Scholar 

  • Cherry, J. L. and F. R. Adler (2000). How to make a biological switch. J. Theor. Biol. 203, 117–133.

    Article  Google Scholar 

  • de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 69–105.

    Google Scholar 

  • de Jong, H., M. Page, C. Hernandez and J. Geiselmann (2001). Qualitative simulation of genetic regulatory networks: method and application, in Proc. Seventeenth Int. Joint Conf. Artif. Intell., IJCAI-01, B. Nebel (Ed.), San Mateo, CA: Morgan Kaufmann, pp. 67–73.

    Google Scholar 

  • de Jong, H., J.-L. Gouzé, C. Hernandez, M. Page, T. Sari and H. Geiselmann (2002). Qualitative simulation of genetic regulatory networks using piecewise-linear models. Technical Report RR-4407, INRIA.

  • de Jong, H., J. Geiselmann, G. Batt, C. Hernandez and M. Page (2003a). Qualitative simulation of the initiation of sporulation in Bacillus subtilis. Bull. Math. Biol. (this volume).

  • de Jong, H., J. Geiselmann, C. Hernandez and M. Page (2003b). Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19, 336–344.

    Article  Google Scholar 

  • Edwards, R. (2000). Analysis of continuous-time switching networks. Physica D 146, 165–199.

    Article  MATH  MathSciNet  Google Scholar 

  • Edwards, R. and L. Glass (2000). Combinatorial explosion in model gene networks. Chaos 10, 691–704.

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, C. and S. K. Spurgeon (1998). Sliding Mode Control: Theory and Applications, London: Taylor & Francis.

    Google Scholar 

  • Edwards, R., H. T. Siegelmann, K. Aziza and L. Glass (2001). Symbolic dynamics and computation in model gene networks. Chaos 11, 160–169.

    Article  Google Scholar 

  • Elowitz, M. B. and S. Leibler (2000). A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338.

    Article  Google Scholar 

  • Endy, D. and R. Brent (2001). Modelling cellular behavior. Nature 409, 391–395.

    Article  Google Scholar 

  • Filippov, A. F. (1988). Differential Equations with Discontinuous Righthand Sides, Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Forbus, K. D. (1984). Qualitative process theory. Artif. Intell. 24, 85–168.

    Article  Google Scholar 

  • Gardner, T. S., C. R. Cantor and J. J. Collins (2000). Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342.

    Article  Google Scholar 

  • Ghosh, R., A. Tiwari and C. L. Tomlin (2003). Automated symbolic reachability analysis with application to Delta-Notch signaling automata, in Hybrid Systems: Computation and Control (HSCC 2003), Lecture Notes in Computer Science 2623, A. Pnueli and O. Maler (Eds), Berlin: Springer, pp. 233–248.

    Google Scholar 

  • Ghosh, R. and C. J. Tomlin (2001). Lateral inhibition through Delta-Notch signaling: a piecewise affine hybrid model, in Hybrid Systems: Computation and Control (HSCC 2001), Lecture Notes in Computer Science 2034, M. D. Di Benedetto and A. Sangiovanni-Vincentelli (Eds), Berlin: Springer, pp. 232–246.

    Google Scholar 

  • Glass, L. (1975a). Classification of biological networks by their qualitative dynamics. J. Theor. Biol. 54, 85–107.

    Google Scholar 

  • Glass, L. (1975b). Combinatorial and topological methods in nonlinear chemical kinetics. J. Chem. Phys. 63, 1325–1335.

    Article  Google Scholar 

  • Glass, L. (1977). Global analysis of nonlinear chemical kinetics, in Statistical Mechanics, Part B: Time Dependent Processes, B. Berne (Ed.), New York: Plenum Press, pp. 311–349.

    Google Scholar 

  • Glass, L. and S. A. Kauffman (1973). The logical analysis of continuous non-linear biochemical control networks. J. Theor. Biol. 39, 103–129.

    Article  Google Scholar 

  • Glass, L. and J. S. Pasternack (1978a). Prediction of limit cycles in mathematical models of biological oscillations. Bull. Math. Biol. 40, 27–44.

    Article  MathSciNet  Google Scholar 

  • Glass, L. and J. S. Pasternack (1978b). Stable oscillations in mathematical models of biological control systems. J. Math. Biol. 6, 207–223.

    MathSciNet  MATH  Google Scholar 

  • Goodwin, B. C. (1963). Temporal Organization in Cells, New York: Academic Press.

    Google Scholar 

  • Gouzé, J.-L. and T. Sari (2003). A class of piecewise linear differential equations arising in biological models. Dyn. Syst. 17, 299–316.

    Article  Google Scholar 

  • Heidtke, K. R. and S. Schulze-Kremer (1998). Design and implementation of a qualitative simulation model of λ phage infection. Bioinformatics 14, 81–91.

    Article  Google Scholar 

  • Karp, P. D. (1993). Design methods for scientific hypothesis formation and their application to molecular biology. Mach. Learn. 12, 89–116.

    Google Scholar 

  • Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution, New York: Oxford University Press.

    Google Scholar 

  • Keller, A. D. (1994). Specifying epigenetic states with autoregulatory transcription factors. J. Theor. Biol. 170, 175–181.

    Article  Google Scholar 

  • Keller, A. D. (1995). Model genetic circuits encoding autoregulatory transcription factors. J. Theor. Biol. 172, 169–185.

    Article  Google Scholar 

  • Kelley, J. L. (1969). General Topology, New York: Van Nostrand.

    Google Scholar 

  • Kohn, K. W. (2001). Molecular interaction maps as information organizers and simulation guides. Chaos 11, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuipers, B. (1994). Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge, Boston, MA: MIT Press.

    Google Scholar 

  • Kuipers, B. J. (1989). Qualitative reasoning: modeling and simulation with incomplete knowledge. Automatica 25, 571–585.

    Article  Google Scholar 

  • Lewis, J. E. and L. Glass (1991). Steady states, limit cycles, and chaos in models of complex biological networks. Int. J. Bifurcat. Chaos 1, 477–483.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, J. E. and L. Glass (1992). Nonlinear dynamics and symbolic dynamics of neural networks. Neural Comput. 4, 621–642.

    Google Scholar 

  • Lockhart, D. J. and E. A. Winzeler (2000). Genomics, gene expression and DNA arrays. Nature 405, 827–836.

    Article  Google Scholar 

  • McAdams, H. H. and A. Arkin (1998). Simulation of prokaryotic genetic circuits. Ann. Rev. Biophys. Biomol. Struct. 27, 199–224.

    Article  Google Scholar 

  • McAdams, H. H. and L. Shapiro (1995). Circuit simulation of genetic networks. Science 269, 650–656.

    Google Scholar 

  • Mendoza, L., D. Thieffry and E. R. Alvarez-Buylla (1999). Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15, 593–606.

    Article  Google Scholar 

  • Mestl, T., E. Plahte and S. W. Omholt (1995a). A mathematical framework for describing and analysing gene regulatory networks. J. Theor. Biol. 176, 291–300.

    Article  Google Scholar 

  • Mestl, T., E. Plahte and S. W. Omholt (1995b). Periodic solutions in systems of piecewise-linear differential equations. Dyn. Stabil. Syst. 10, 179–193.

    MathSciNet  MATH  Google Scholar 

  • Morohashi, M., A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle and H. Kitano (2002). Robustness as a measure of plausibility in models of biochemical networks. J. Theor. Biol. 216, 19–30.

    Article  MathSciNet  Google Scholar 

  • Omholt, S. W., X. Kefang, Ø. Andersen and E. Plahte (1998). Description and analysis of switchlike regulatory networks exemplified by a model of cellular iron homeostasis. J. Theor. Biol. 195, 339–350.

    Article  Google Scholar 

  • Pandey, A. and M. Mann (2000). Proteomics to study genes and genomes. Nature 405, 837–846.

    Article  Google Scholar 

  • Plahte, E., T. Mestl and S. W. Omholt (1994). Global analysis of steady points for systems of differential equations with sigmoid interactions. Dyn. Stabil. Syst. 9, 275–291.

    MathSciNet  MATH  Google Scholar 

  • Plahte, E., T. Mestl and S. W. Omholt (1995). Stationary states in food web models with threshold relationships. J. Biol. Syst. 3, 569–577.

    Article  Google Scholar 

  • Plahte, E., T. Mestl and S. W. Omholt (1998). A methodological basis for description and analysis of systems with complex switch-like interactions. J. Math. Biol. 36, 321–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Prokudina, E. I., R. Y. Valeev and R. N. Tchuraev (1991). A new method for the analysis of the dynamics of the molecular genetic control systems. II. Application of the method of generalized threshold models in the investigation of concrete genetic systems. J. Theor. Biol. 151, 89–110.

    Google Scholar 

  • Ptashne, M. (1992). A Genetic Switch: Phage λ and Higher Organisms, 2nd edn, Cambridge, MA: Cell Press & Blackwell Science.

    Google Scholar 

  • Ren, B. et al. (2000). Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309.

    Article  Google Scholar 

  • Sánchez, L. and D. Thieffry (2001). A logical analysis of the Drosophila gap genes. J. Theor. Biol. 211, 115–141.

    Article  Google Scholar 

  • Santillán, M. and M. C. Mackey (2001). Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. Proc. Natl Acad. Sci. USA 98, 1364–1369.

    Article  Google Scholar 

  • Snoussi, E. H. (1989). Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stabil. Syst. 4, 189–207.

    MATH  MathSciNet  Google Scholar 

  • Snoussi, E. H. and R. Thomas (1993). Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991.

    Article  MATH  Google Scholar 

  • Somogyi, R. and C. A. Sniegoski (1996). Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1, 45–63.

    MathSciNet  Google Scholar 

  • Tchuraev, R. N. and V. A. Ratner (1983). A continuous approach with threshold characteristics for simulation of gene expression, in Molecular Genetic Information Systems: Modelling and Simulation, K. Bellmann (Ed.), Berlin: Akademie-Verlag, pp. 64–80.

    Google Scholar 

  • Thieffry, D., A. M. Huerta, E. Pérez-Rueda and J. Collado-Vides (1998). From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20, 433–440.

    Article  Google Scholar 

  • Thieffry, D. and R. Thomas (1995). Dynamical behaviour of biological networks: II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297.

    Article  MATH  Google Scholar 

  • Thomas, R. and R. d’Ari (1990). Biological Feedback, Boca Raton, FL: CRC Press.

    MATH  Google Scholar 

  • Thomas, R., D. Thieffry and M. Kaufman (1995). Dynamical behaviour of biological regulatory networks: I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276.

    Article  MATH  Google Scholar 

  • Trelease, R. B., R. A. Henderson and J. B. Park (1999). A qualitative process system for modelingNF-κB and AP-1 gene regulation in immune cell biology research. Artif. Intell. Med. 17, 303–321.

    Article  Google Scholar 

  • von Dassow, G., E. Meir, E. M. Munro and G. M. Odell (2000). The segment polarity network is a robust developmental module. Nature 406, 188–192.

    Article  Google Scholar 

  • Wolf, D. M. and F. H. Eeckman (1998). On the relationship between genomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol. 195, 167–186.

    Article  Google Scholar 

  • Yagil, G. and E. Yagil (1971). On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11–27.

    Article  Google Scholar 

  • Zhu, H. and M. Snyder (2001). Protein arrays and microarrays. Curr. Opin. Chem. Biol. 5, 40–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidde de Jong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, H., Gouzé, JL., Hernandez, C. et al. Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004). https://doi.org/10.1016/j.bulm.2003.08.010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.08.010

Keywords

Navigation