Bulletin of Mathematical Biology

, Volume 66, Issue 2, pp 199–232 | Cite as

A computational model of the mechanics of growth of the villous trophoblast bilayer

  • Katarzyna A. Rejniak
  • Harvey J. Kliman
  • Lisa J. Fauci
Article

Abstract

We present a computational model of the mechanics of growth of the trophoblast bilayer in a chorionic villous, the basic structure of the placenta. The placental trophoblast is modeled as a collection of elastic neutrally buoyant membranes (mononuclear cytotrophoblasts and multinucleated syncytiotrophoblast) filled with a viscous, incompressible fluid (cytoplasm) with sources of growth located inside cells. We show how this complex, dynamic fluid-based structure can be modeled successfully using the immersed boundary method. The results of our research presented here include simulations of two processes—cell proliferation and cell fusion which both play a crucial role in the growth and development of the trophoblast tissue. We present the computed results of simulations of both processes running independently as well as simultaneously, along with comparisons with clinically obtained results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson (1994). Molecular Biology of the Cell, Garland Publishing.Google Scholar
  2. Arthurs, K. M., L. C. Moore, C. S. Peskin, E. B. Pitman and H. E. Layton (1998). Modeling arteriolar flow and mass transport using the immersed boundary method. J. Comput. Phys. 147, 402–440.MathSciNetCrossRefMATHGoogle Scholar
  3. Batchelor, G. K. (1967). An Introduction to Fluid Dynamics, Cambridge Press.Google Scholar
  4. Benirschke, K. and P. Kaufmann (1995). Pathology of the Human Placenta, Springer.Google Scholar
  5. Bottino, D. C. (1998). Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comput. Phys. 147, 86–113.MATHCrossRefGoogle Scholar
  6. Bottino, D. C. and L. J. Fauci (1998). A computational model of ameboid deformation and locomotion. Eur. Biophys. J. 27, 532–539.CrossRefGoogle Scholar
  7. Boyd, J. D. and W. J. Hamilton (1970). The Human Placenta, Cambridge: W. Heffer & Sons, Ltd.Google Scholar
  8. Chicurel, M. E., Ch. S. Chen and D. E. Ingber (1998). Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239.CrossRefGoogle Scholar
  9. Cortez, R. and M. Minion (2000). The Blob projection method for the immersed boundary problems. J. Comput. Phys. 161, 428–453.MathSciNetCrossRefMATHGoogle Scholar
  10. Davidson, L. A., M. A. R. Koehl, R. Keller and G. F. Oster (1995). How do see urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–2018.Google Scholar
  11. Dillon, R. H. and L. J. Fauci (2001). A fluid-structure interaction model of ciliary beating, in Computational Modeling in Biological Fluid Dynamics, The IMA Volumes in Mathematics and its Applications 124, L. J. Fauci and S. Gueron (Eds), Springer, pp. 71–80.Google Scholar
  12. Dillon, R. and L. Fauci (2000a). A microscale model of bacterial and biofilm dynamics in porus media. Biotechnol. Bioeng. 68, 536–547.CrossRefGoogle Scholar
  13. Dillon, R. and L. Fauci (2000b). An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J. Theor. Biol. 207, 415–430.CrossRefGoogle Scholar
  14. Dillon, R., L. J. Fauci, A. Fogelson and D. Gaver (1996). Modeling biofilm processes using the immersed boundary method. J. Comput. Phys. 129, 57–73.CrossRefMATHGoogle Scholar
  15. Dillon, R., L. J. Fauci and D. Gaver III (1995). Microscale model of bacterial swimming, chemotaxis and substrate transport. J. Theor. Biol. 177, 325–340.CrossRefGoogle Scholar
  16. Dillon, R. and H. G. Othmer (1999). A mathematical model for outgrowth and spatial pattering of the vertebrate limb bud. J. Theor. Biol. 197, 295–330.CrossRefGoogle Scholar
  17. Fauci, L. J. (1990). Interaction of oscillating filaments: a computational study. J. Comput. Phys. 86, 294–313.MATHMathSciNetCrossRefGoogle Scholar
  18. Fauci, L. J. and A. L. Fogelson (1993). Truncated Newton Method and the Modeling of Complex Immersed Elastic Structures. Communication on Pure and Applied Mathematics, XLVI, pp. 787–818.Google Scholar
  19. Fauci, L. F. and C. S. Peskin (1988). A computational model of aquatic animal locomotion. J. Comput. Phys. 77, 85–107.MathSciNetCrossRefMATHGoogle Scholar
  20. Fogelson, A. L. (1984). A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J. Comput. Phys. 56, 111–134.MATHMathSciNetCrossRefGoogle Scholar
  21. Honore, L. H., F. J. Dill and B. J. Poland (1976). Placental morphology in spontaneous human abortuses with normal and abnormal karyotypes. Teratology 14, 151–166.CrossRefGoogle Scholar
  22. Jung, E. and C. S. Peskin (2001). 2-D simulations of valveless pumping using the immersed boundary method. SIAM J. Sci. Comput. 23, 19–45.MathSciNetCrossRefMATHGoogle Scholar
  23. Kliman, H. J. (1999). Trophoblast to Human Placenta, Encyclopedia of Reproduction 4, E. Knobil and J. D. Neill (Eds), Academic Press.Google Scholar
  24. Kliman, H. J., M. A. Feinman and J. F. Strauss III (1987). Differentiation of human cytotrophoblast into syncytiotrophoblast in culture. Trophoblast Res. 4, 407–421.Google Scholar
  25. Kliman, H. J. and L. French (2001). Trophoblast inclusions are associated with karyotypic abnormalities. 21st Annual Meeting of the Society for Maternal-Fetal Medicine, Reno, NV.Google Scholar
  26. Kliman, H. J., J. E. Nestler, E. Sermasi, J. M. Sanger and J. F. Strauss III (1986). Purification, characterization and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118, 1567–1582.CrossRefGoogle Scholar
  27. Kliman, H. J. and L. Segel (2003). The placenta may predict the baby. J. Theor. Biol. 225, 143–145.MathSciNetCrossRefGoogle Scholar
  28. Kliman, H. J., L. Segel, L. Fauci and R. Cortez (2001). Model for the formation of trophoblast inclusions in chorionic villi. 21st Annual Meeting of the Society for Maternal-Fetal Medicine, Reno, NV.Google Scholar
  29. Lewis, S. H. and E. Perrin (1999). Pathology of the Placenta, Churchill Livingstone.Google Scholar
  30. Mayhew, T. M. (2001). Villous trophoblast of human placenta: a coherent view of its turnover, repair and contribution to villous development and maturation. Histol. Histopathol. Cell. Mol. Biol. 16, 1213–1224.Google Scholar
  31. McQueen, D. M. and C. S. Peskin (1989). A three-dimensional computational method for blood flow in the heart. II. Contractible fibers. J. Comput. Phys. 82, 289–297.MathSciNetCrossRefMATHGoogle Scholar
  32. Novak, R., D. Agamanolis, S. Dasu, H. Igel, M. Platt, H. Robinson and B. Shehata (1998). Histologic analysis of placental tissue in first trimester abortions. Pediatr. Pathol. 8, 477–482.Google Scholar
  33. Peskin, C. S. (1972). Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271.MATHMathSciNetCrossRefGoogle Scholar
  34. Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252.MATHMathSciNetCrossRefGoogle Scholar
  35. Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 1–39.Google Scholar
  36. Peskin, C. S. and D. M. McQueen (1995). A general method for computer simulation of biological systems interacting with fluids, in Biological Fluid Dynamics, vol. 19, C. P. Ellington and T. J. Pedley (Eds), Cambridge Press, pp. 265–276.Google Scholar
  37. Peskin, C. S. and D. M. McQueen (1989). A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81, 327–405.MathSciNetCrossRefGoogle Scholar
  38. Rejniak, K. A. (2002). A computational model of the mechanics of growth of a trophoblast tissue, PhD thesis, Tulane University, New Orleans, USA.Google Scholar
  39. Silvestre, E., V. Cusi, M. Borras and J. Anitch (1996). Cytogenetic and morphologic findings in chorionic villi from spontaneous abortions. Birth Defects; Original Article Series 30, 353–357.Google Scholar
  40. Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 285, 313–318.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2004

Authors and Affiliations

  • Katarzyna A. Rejniak
    • 1
  • Harvey J. Kliman
    • 2
  • Lisa J. Fauci
    • 3
  1. 1.Mathematical Biosciences InstituteThe Ohio State UniversityColumbusUSA
  2. 2.Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenUSA
  3. 3.Department of MathematicsTulane UniversityNew OrleansUSA

Personalised recommendations