Skip to main content
Log in

Possible contribution of IGF-1 to depressive disorder

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Depression is an illness of unknown origin and involves the dysregulation of many physiological processes disturbed in this disease. It has been postulated that the pathomechanism of depression is complex, and apart from changes in neurotransmitters, a dysregulation of the immune and endocrine systems also plays an important role in the development of this disorder. Recent studies indicate that an impairment of synaptic plasticity in specific areas of the central nervous system (CNS), particularly the hippocampus, may be an important factor in the pathogenesis of depression. The abnormal neural plasticity may be related to alterations in the levels of neurotrophic factors. On this basis, a theory connecting the occurrence of depression with disturbances in neurotrophic factors has gained great attention.

This review summarizes data suggesting a role for the neurotrophic factors – especially insulin-like-growth factor-1 (IGF-1) – as possible targets for therapy in depression in the context of depressive behavior modulation, anti-inflammatory action and neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAD:

Bcl-2-associated death promoter protein

BDNF:

brain-derived neurotrophic factor

CNS:

central nervous system

CTNF:

ciliary neurotrophic factor

GSK-3β:

glycogen synthase kinase-3β

HPA:

hypothalamus-pituitaryadrenal

IFN-γ:

interferon-γ

IGFBP:

insulin-like growth factor binding protein

IGF-1:

insulin-like growth factor-1

IGF-1R:

insulin-like growth factor-1 receptor

IGF-2:

insulin-like growth factor-2

IL-1β:

interleukin-1β

IL-4:

interleukin-4

IL-10:

interleukin-10

iNOS:

inducible NO synthase

IR:

insulin receptor

IRS-1:

insulin receptor substrate-1

LIF:

leukemia inhibitory factor

LPS:

lipopolysaccharide

M6P/IGF-2R:

mannose-6 phosphate/insulin-like growth factor-2 receptor

MAPK/ERK:

mitogen-activated protein kinases/extracellular signal-regulated kinases

mTOR:

mammalian target of rapamycin

NGF:

nerve growth factor

NT-3:

neurotrophin-3

NT-4/5:

neurotrophin-4/5

PI3K/AKT:

phosphatidylinositide 3-kinase/protein kinase B

PLC:

phospholipase C

Src:

proto-oncogene tyrosine-protein kinase

TNF-α:

tumor necrosis factor-α.

References

  1. Aberg MA, Aberg ND, Hedbäcker H, Oscarsson J, Eriksson PS: Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci, 2000, 20, 2896–2903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aguado F, Carmona MA, Pozas E, Aguiló A, Martínez-Guijarro FJ, Alcantara S, Borrell V et al.: BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl co-transporter KCC2. Development, 2003, 130, 1267–1280.

    Article  CAS  PubMed  Google Scholar 

  3. Annuziata M, Granata R, Ghigo E: The IGF system. Acta Diabetol, 2011, 48, 1–9.

    Article  CAS  Google Scholar 

  4. Barreto RA, Walker FR, Dunkley PR, Day TA, Smith DW: Fluoxetine prevents development of an early stress-related molecular signature in the rat infralimbic medial prefrontal cortex. Implications for depression? BMC Neurosci, 2012, 13, 125–142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bezchlibnyk YB, Xu L, Wang JF, Young LT: Decreased expression of insulin-like growth factor binding protein 2 in the prefrontal cortex of subjects with bipolar disorder and its regulation by lithium treatment. Brain Res, 2007, 1147, 213–217.

    Article  CAS  PubMed  Google Scholar 

  6. Bluthé RM, Kelley KW, Dantzer R: Effects of insulinlike growth factor-I on cytokine-induced sickness behavior in mice. Brain Behav Immun, 2006, 20, 57–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cieślik K, Sowa-Kućma M, Ossowska G, Legutko B, Wolak M, Opoka W, Nowak G: Chronic unpredictable stress-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) gene expression is antagonized by zinc treatment. Pharmacol Rep, 2011, 63, 537–543.

    Article  PubMed  Google Scholar 

  8. Dantzer R, Gheusi G, Johnson RW, Kelley KW: Central administration of insulin-like growth factor-1 inhibits lipopolysaccharide-induced sickness behavior in mice. Neuroreport, 1999, 10, 289–292.

    Article  CAS  PubMed  Google Scholar 

  9. Duman R: Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med, 2004, 5, 11–25.

    Article  CAS  PubMed  Google Scholar 

  10. Erabi K, Morinobu S, Kawano K, Tsuji S, Yamawaki S: Neonatal isolation changes the expression of IGF-IR and IGFBP-2 in the hippocampus in response to adulthood restraint stress. Int J Neuropsychopharmacol, 2007, 10, 369–381.

    Article  CAS  PubMed  Google Scholar 

  11. Grunbaum-Novak N, Taler M, Gil-Ad I, Weizman A, Cohen H, Weizman R: Relationship between antidepressants and IGF-1 system in the brain: possible role in cognition. Eur Neuropsychopharmacol, 2008, 18, 431–438.

    Article  CAS  PubMed  Google Scholar 

  12. Guan J, Bennet L, Gluckman PD, Gunn AJ.: Insulin-like growth factor-l and post-ischemic brain injury. Prog Neurobiol, 2003, 70, 443–462.

    Article  CAS  PubMed  Google Scholar 

  13. Hellweg R, Lang UE, Nagel M, Baumgartner A: Sub-chronic treatment with lithium increases nerve growth factor content in distinct brain regions of adult rats. Mol Psychiatry, 2002, 7, 604–608.

    Article  CAS  PubMed  Google Scholar 

  14. Hoshaw BA, Hill TI, Crowley JJ, Malberg JE, Khawaja X, Rosenzweig- Lipson S, Schechter LE, Lucki I: Antidepressant-like behavioral effects of IGF-1 produced by enhanced serotonin transmission. Eur J Pharmacol, 2008, 594, 109–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoshaw BA, Malberg JE, Lucki I: Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like activity. Brain Res, 2005, 1037, 204–208.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang C, Salton SR: The role of neurotrophins in major depressive disorder. Transl Neurosci, 2013, 4, 46–58.

    Article  PubMed  Google Scholar 

  17. Jones JI, Clemmons DR: Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev, 1995, 16, 3–34.

    CAS  PubMed  Google Scholar 

  18. Khawaja X, Xu J, Liang JJ, Barrett JE: Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J Neurosci Res, 2004, 75, 451–460.

    Article  CAS  PubMed  Google Scholar 

  19. Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S: Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depress Res Treat, 2012, 752563, 1–8.

    Google Scholar 

  20. Lee KY, Miki T, Yokoyama T, Ueki M, Warita K, Suzuki S, Ohta K et al.: Neonatal repetitive maternal separation causes long-lasting alterations in various neurotrophic factor expression in the cerebral cortex of rats. Life Sci, 2012, 90, 578–584.

    Article  CAS  PubMed  Google Scholar 

  21. Li YJ, Xu M, Gao ZH, Wang YQ, Yue Z, Zhang YX, Li XX et al.: Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One, 2013, 8, e63648, 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Malberg JE, Platt B, Rizzo SJ, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S: Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology, 2007, 32, 2360–2368.

    Article  CAS  PubMed  Google Scholar 

  23. Martino M, Rocchi G, Escelsior A, Contini P, Colicchio S, de Berardis D, Amore M et al.: NGF serum levels variations in major depressed patients receiving duloxetine. Psychoneuroendocrinology, 2013, 38, 1824–1828.

    Article  CAS  PubMed  Google Scholar 

  24. Masi G, Brovedani P: The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs, 2011, 25, 913–931.

    Article  CAS  PubMed  Google Scholar 

  25. Matheny RW, Nindl BC, Adamo ML: Minireview: mechano-growth factor: a putative product of the IGF-I gene expression involved in tissue repair and regeneration. Endocrinology, 2010, 151, 865–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCusker RH, McCrea K, Zunich S, Dantzer R, Broussard SR, Johnson RW, Kelley KW: Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons. J Neuroimmunol, 2006, 9, 186–190.

    Article  CAS  Google Scholar 

  27. Miguel-Hidalgo JJ, Rajkowska G: Morphological brain changes in depression: can antidepressants reverse them? CNS Drugs, 2002, 16, 361–372.

    Article  CAS  PubMed  Google Scholar 

  28. Mitschelen M, Yan H, Farley JA, Warrington JP, Han S, Hereñú CB, Csiszar A et al.: Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: a potential model of geriatric depression. Neuroscience, 2011, 185, 50–60.

    Article  CAS  PubMed  Google Scholar 

  29. O’Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW: Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cell Immunol, 2008, 252, 91–110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Palomino A, González-Pinto A, Martinez-Cengotita-bengoa M, Ruiz de Azua S, Alberich S, Mosquera F, Matute C: Relationship between negative symptoms and plasma levels of insulin-like growth factor 1 in first-episode schizophrenia and bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry, 2013, 44, 29–33.

    Article  CAS  PubMed  Google Scholar 

  31. Pang Y, Campbell L, Zheng B, Fan L, Cai Z, Rhodes P: Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience, 2010, 166, 464–475.

    Article  CAS  PubMed  Google Scholar 

  32. Park SE, Dantzer R, Kelley KW, McCusker RH: Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflamm, 2011, 8, 1–14.

    Article  CAS  Google Scholar 

  33. Park SE, Lawson M, Dantzer R, Kelley KW, McCusker RH: Insulin-like growth factor-I pepides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolisaccharide. J Neuroinflamm, 2011, 8, 1–16.

    Article  CAS  Google Scholar 

  34. Puzik A, Rupp J, Tröger B, Göpel W, Herting E, Härtel C: Insulin-like growth factor-I regulates the neonatal immune response in infection and maturation by suppression of IFN-γ. Cytokine, 2012, 60, 369–376.

    Article  CAS  PubMed  Google Scholar 

  35. Randle PJ: Plasma-insulin activity in hypopituitarism assayed by the rat diaphragm method. Lancet, 1954, 266, 809–810.

    Article  CAS  PubMed  Google Scholar 

  36. Réus GZ, Stringari RB, Ribeiro KF, Cipriano AL, Panizzutti BS, Stertz L, Lersch C et al.: Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochem Res, 2011, 36, 460–466.

    Article  PubMed  CAS  Google Scholar 

  37. Russo VC, Gluckman PD, Feldman EL, Werther GA: The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev, 2005, 6, 916–943.

    Article  CAS  Google Scholar 

  38. Suh HS, Zhao ML, Derico L, Choi N, Lee SC.: Insulinlike growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflammation, 2013, 10, 37–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Supeno NE, Pati S, Hadi RA, Ghani AR, Mustafa Z, Abdullah JM, Idris FM et al.: IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci, 2013, 10, 522–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Torres-Aleman I:Toward a comprehensive neurobiology of IGF-I. Dev Neurobiol, 2010, 70, 384–396.

    CAS  PubMed  Google Scholar 

  41. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ: Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci, 2006, 9, 519–525.

    Article  CAS  PubMed  Google Scholar 

  42. Weber- Haman B, Blum WF, Kratzsch J, Gilles M, Heuser I, Deuschle M: Insulin-like growth factor-I (IGF-I) serum concentrations in depressed patients: relationship to saliva cortisol and changes during antidepres-sant treatment. Pharmacopsychiatry, 2009, 42, 23–28.

    Article  CAS  Google Scholar 

  43. Wysokiński A, Gruszczyński W: Neurotrophins – actual knowledge (Polish). Post Psychiat Neurol, 2008, 17, 385–390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Basta-Kaim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczęsny, E., Ślusarczyk, J., Głombik, K. et al. Possible contribution of IGF-1 to depressive disorder. Pharmacol. Rep 65, 1622–1631 (2013). https://doi.org/10.1016/S1734-1140(13)71523-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71523-8

Key words

Navigation