Skip to main content
Log in

Neuroendocrine link between stress, depression and diabetes

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Clinical studies have indicated a frequent coexistence of depression and diabetes. Both of these diseases are associated with similar changes in the structure and function of the central nervous system cells and with similar disturbances of cognitive processes. Some morphological and functional changes occurring in these diseases seem to result from exaggerated glucocorticoid, proinflammatory cytokine or glutamate action. Glucocorticoids induced by stress are known not only to affect synaptic plasticity but also to disturb brain glucose metabolism and decrease insulin sensitivity. Functional neuroimaging studies demonstrated altered glucose metabolism in the brains of depressed patients. Changes in the amount or activity of key metabolic enzymes and a lower sensitivity of insulin receptors have been detected in the brains of animal models of both of these diseases. Hence, excess glucocorticoids can lead to impaired insulin action and glucose metabolism, to limited energy supply for proper neuronal function and, consequently, to disturbed synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIR:

acute insulin response

BBB:

bloodbrain barrier

BDNF:

brain-derived neurotrophic factor

CNS:

central nervous system

CRF:

corticotropin-releasing factor

CUMS:

chronic unpredictable mild stress

GLP:

glucagonlike peptide

GLUT:

glucose transporter

GR:

glucocorticoid receptors

HFD:

high-fat diet

HK:

hexokinase

HPA:

hypothalamus-pituitary-adrenal

IGF:

insulin-like growth factor

IRs:

insulin receptors

IRS:

insulin receptor substrate

MR:

mineralocorticoid receptors

NGF:

nerve growth factor

PVN:

hypothalamic paraventricular nucleus

SOCS:

suppressor of cytokine signaling

VMH:

hypothalamic ventromedial nucleus

References

  1. Baldwin D, Apel J: Management of hyperglycemia in hospitalized patients with renal insufficiency or steroid-induced diabetes. Curr Diab Rep, 2013, 13, 114–120.

    Article  CAS  PubMed  Google Scholar 

  2. Banks WA, Owen JB, Erickson MA: Insulin in the brain: there and back again. Pharmacol Ther, 2012, 136, 82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beauquis J, Roig P, De Nicola AF, Saravia F: Neuronal plasticity and antidepressants in the diabetic brain. Ann N Y Acad Sci, 2009, 1153, 203–208.

    Article  PubMed  Google Scholar 

  4. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R et al.: Role of brain insulin receptor in control of body weight and reproduction. Science, 2000, 289, 21222125.

    Article  PubMed  Google Scholar 

  5. Chiu SL, Chen CM, Cline HT: Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron, 2008, 58, 708–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Darsalia V, Mansouri S, Ortsäter H, Olverling A, No-zadze N, Kappe C, Iverfeldt K et al.: Glucagon-like peptide-I receptor activation reduces ischaemic brain damage following stroke in Type 2 diabetic rats. Clin Sci (Lond), 2012, 122, 473–483.

    Article  CAS  Google Scholar 

  7. Deuschle M: Effects of antidepressants on glucose metabolism and diabetes mellitus type 2 in adults. Curr Opin Psychiatry, 2013, 26, 60–65.

    Article  PubMed  Google Scholar 

  8. Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME: Glucose metabolism in the amygdala in depression: Relationship to diagnostic subtype and plasma cortisol levels. Pharm Biochem Behav, 2002, 71, 431–447.

    Article  CAS  Google Scholar 

  9. Drevets WC, Price JL, Furey ML: Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct, 2008, 213, 93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  10. García-Díaz DF, Campion J, Milagro FI, Lomba A, Marzo F, Martínez JA: Chronic mild stress induces variations in locomotive behavior and metabolic rates in high fat fed rats. J Physiol Biochem, 2007, 63, 337–346.

    Article  PubMed  Google Scholar 

  11. Gejl M, Lerche S, Egefjord L, Brock B, Møller N, Vang K, Rodell AB et al.: Glucagon-like peptide-1 (GLP-1) raises blood-brain glucose transfer capacity and hexokinase activity in human brain. Front Neuroenergetics, 2013, 5, 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gil-Lozano M, Pérez-Tilve D, Alvarez-Crespo M, Martís A, Fernandez AM, Catalina PAF, González-Matías L, Mallo F: GLP-1(7–36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans. Endocrinology, 2010, 151, 2629–2640.

    Article  CAS  PubMed  Google Scholar 

  13. Grillo CA, Piroli GG, Kaigler KF, Wilson SP, Wilson MA, Reagan LP: Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav Brain Res, 2011, 222, 230–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haj-ali V, Mohaddes G, Babri SH: Intracerebroventricular insulin improves spatial learning and memory in male Wistarrats. Behav Neurosci, 2009, 123, 1309–1314.

    Article  CAS  PubMed  Google Scholar 

  15. Hosokawa T, Momose T, Kasai K: Brain glucose metabolism difference between bipolar and unipolar mood disorders in depressed and euthymic state. Prog Neuropsychopharmacol Biol Psychiatry, 2009, 33, 243–250.

    Article  CAS  PubMed  Google Scholar 

  16. Hoyer S, Lannert H: Long-term effects of corticosterone on behavior, oxidative and energy metabolism of parietotemporal cerebral cortex and hippocampus of rats: comparison to intracerebroventricular streptozotocin. J Neural Transm, 2008, 115, 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  17. Hu H, Su L, Xu YQ, Zhang H, Wang LW: Behavioral and [F-18] fluorodeoxyglucose micro positron emission tomography imaging study in a rat chronic mild stress model of depression. Neuroscience, 2010, 169, 171–181.

    Article  CAS  PubMed  Google Scholar 

  18. Hung Y, Hsieh C, Chen Y, Pei D, Kuo S, Shen D, Sheu WH, Chen Y: Insulin sensitivity, proinflammatory markers and adiponectin in young males with different subtypes of depressive disorder. Clin Endocrinol, 2007, 67, 784–789.

    Article  CAS  Google Scholar 

  19. Kanemaru K, Diksic M: The Flinders Sensitive Line of rats, a rat model of depression, has elevated brain glucose utilization when compared to normal rats and the Flinders Resistant Line of rats. Neurochem Int, 2009, 55, 655–661.

    Article  CAS  PubMed  Google Scholar 

  20. Khanam R, Najfi H, Akhtar M, Vohora D: Evaluation of venlafaxine on glucose homeostasis and oxidative stress in diabetic mice. Hum Exp Toxicol, 2012, 31, 1244–1250.

    Article  CAS  PubMed  Google Scholar 

  21. Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C et al.: Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab, 2007, 5, 438–449.

    Article  PubMed  CAS  Google Scholar 

  22. Lemaire V, Koehl M, Le Moal M, Abrous DN: Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA, 2000, 97, 11032–11037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li L, Li X, Zhou W, Messina JL: Acute psychological stress results in the rapid development of insulin resistance. J Endocrinol, 2013, 217, 175–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Magariños AM, McEwen BS: Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA, 2000, 97, 11056–11061.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marano CM, Workman CI, Kramer E, Hermann CR, Ma Y, Dhawan V, Chaly T et al.: Longitual studies of cerebral glucose metabolism in late-life depression and normal aging. Int J Geriatr Psychiatry, 2013, 28, 417–423.

    Article  PubMed  Google Scholar 

  26. Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA: Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci, 2009, 29, 6734–6751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McEwen BS, Magariños AM, Reagan LP: Studies of hormone action in the hippocampal formation: possible relevance to depression and diabetes. J Psychosom Res, 2002, 53, 883–890.

    Article  PubMed  Google Scholar 

  28. Mielke JG, Wang YT: Insulin, synaptic function, and opportunities for neuroprotection. Prog Mol Biol Transl Sci, 2011, 98, 133–186.

    Article  CAS  PubMed  Google Scholar 

  29. Nyirenda MJ, Welberg LAM, Seckl JR: Programming hyperglycaemia in the rat through prenatal exposure to glucocorticoids-fetal effect or maternal influence? J Endocrinol, 2001, 170, 653–660.

    Article  CAS  PubMed  Google Scholar 

  30. Pan Y, Hong Y, Zhang QY, Kong LD: Impaired hypotha-lamic insulin signaling in CUMS rats: restored by icariin and fluoxetine through inhibiting CRF system. Psychoneuroendocrinology, 2013, 38, 122–134.

    Article  CAS  PubMed  Google Scholar 

  31. Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R: Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology, 2013, 154, 375–387.

    Article  CAS  PubMed  Google Scholar 

  32. Perry T, Lahiri DK, Chen D, Zhou J, Shaw KT, Egan JM, Greig NH: A novel neurotrophic property of glucagons-like+ peptide-1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther, 2002, 300, 958–966.

    Article  CAS  PubMed  Google Scholar 

  33. Pham K, Nacher J, Hof PR, McEwen BS: Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci, 2003, 17, 879–886.

    Article  PubMed  Google Scholar 

  34. Plaschke K, Müller D, Hoyer S: Effect of adrenalectomy and corticosterone substitution on glucose and glycogen metabolism in rat brain. J Neural Transm, 1996, 103, 89–100.

    Article  CAS  PubMed  Google Scholar 

  35. Porte D Jr, Baskin DG, Schwartz MW: Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes, 2005, 54, 1264–1276.

    Article  CAS  PubMed  Google Scholar 

  36. Porter DW, Kerr BD, Flatt PR, Holscher C, Gault VA: Four weeks administration of liraglutide improves memory and learning as well as glycaemic control in mice with high fat dietary-induced obesity and insulin resistance. Diabetes Obes Metab, 2010, 12, 891–899.

    Article  CAS  PubMed  Google Scholar 

  37. Pratchayasakul W, Kerdphoo S, Petsophonsakul P, Pong-chaidecha A, Chattipakorn N, Chattipakorn SC: Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci, 2011, 88, 619–627.

    Article  CAS  PubMed  Google Scholar 

  38. Rasgon NL, Kenna HA: Insulin resistance in depressive disorders and Alzheimer’s disease: revisiting the missing link hypothesis. Neurobiol Aging, 2005, 26, Suppl 1, 103–107.

    Article  PubMed  CAS  Google Scholar 

  39. Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G: Mitochondrial detachment in mood and psychotic disorders: Implications for brain energy metabolism and neurotrophic signalling. J Psych Res, 2012, 46, 95–104.

    Article  CAS  Google Scholar 

  40. Saravia FE, Beauquis J, Revsin Y, Homo-Delarche F, de Kloet ER, De Nicola AF: Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment. Cell Mol Neurobiol, 2006, 26, 943–957.

    Article  CAS  PubMed  Google Scholar 

  41. Scherer T, Lehnert H, Hallschmid M: Brain insulin and leptin signaling in metabolic control: from animal research to clinical application. Endocrinol Metab Clin North Am, 2013, 42, 109–125.

    Article  PubMed  Google Scholar 

  42. Skelin I, Sato H, Diksic M: Olfactory bulbectomy reduces cerebral glucose utilization: 2-[14C]deoxyglucose autoradiographic study. Brain Res Bull, 2008, 76, 485–492.

    Article  CAS  PubMed  Google Scholar 

  43. Tagliari B, Noschang CG, Ferreira AG, Ferrari OA, Feksa LR, Wannmacher CM, Dalmaz C, Wyse AT: Chronic variable stress impairs energy metabolism in prefrontal cortex and hippocampus of rats: prevention by chronic antioxidant treatment. Metab Brain Dis, 2010, 25, 169–176.

    Article  CAS  PubMed  Google Scholar 

  44. Vogt MC, Brüning JC: CNS insulin signaling in the control of energy homeostasis and glucose metabolism – from embryo to old age. Trends Endocrinol Metab, 2013, 24, 76–84.

    Article  CAS  PubMed  Google Scholar 

  45. Woods SC, Seeley RJ, Baskin DG, Schwartz MW: Insulin and the blood-brain barrier. Curr Pharm Des, 2003, 9, 795–800.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusława Budziszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detka, J., Kurek, A., Basta-Kaim, A. et al. Neuroendocrine link between stress, depression and diabetes. Pharmacol. Rep 65, 1591–1600 (2013). https://doi.org/10.1016/S1734-1140(13)71520-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71520-2

Key words

Navigation