Skip to main content
Log in

Glial degeneration as a model of depression

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Major depression (MD) is a common and disabling disorder but knowledge of its pathophysiology is still incomplete. In the last years, degenerations or dysfunctions of glial cells, especially astrocytes, have been postulated to play a critical role in the pathogenesis of depression. Glial loss in prefrontal and limbic brain regions was observed in depressed patients and in animal models of stress and depression. Degeneration of astrocytes resulted in an excess glutamate in the synaptic cleft and glutamate/GABA imbalance in the affected structures. This review presents an up-to-date information concerning the role of glial cells in maintenance of glutamate/ GABA balance in the brain tripartite glutamatergic synapses; discusses the importance of glial pathology and presents models of depression based on astrocyte impairment. The model of degeneration of astrocytes in the medial prefrontal cortex of the rat, induced by the specific astrocytic toxin a-aminoadipic acid, is presented as a valuable model for studying antidepressant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, Hellemann G, Vinters HV: Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord, 2010, 12, 541–549.

    Article  PubMed  Google Scholar 

  2. Araque A, Parpura V, Sanzgiri RP, Haydon PG: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci, 1999, 22, 208–215.

    Article  CAS  PubMed  Google Scholar 

  3. Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G: Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry, 2010, 15, 501–511.

    Article  CAS  PubMed  Google Scholar 

  4. Banasr M, Duman RS: Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry, 2008, 64, 863–870.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Banasr M, Dwyer JM, Duman RS: Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol, 2011, 23, 730–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongür D, Cohen BM: Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology, 2010, 35, 2049–2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bowley MP, Drevets WC, Ongür D, Price JL: Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry, 2002, 52, 404–412.

    Article  PubMed  Google Scholar 

  8. Brown DR, Kretzschmar HA: The glio-toxic mechanism of a-aminoadipic acid on cultured astrocytes. J Neurocytol, 1998, 27, 109–118. Erratum in: J Neurocytol, 1998, 27, 281, 294.

    Article  CAS  PubMed  Google Scholar 

  9. Bunney BG, Bunney WE: Rapid-acting antidepressant strategies: mechanisms of action. Int J Neuropsychophar-macol, 2012, 15, 695–713.

    Article  CAS  PubMed  Google Scholar 

  10. Catena-Dell’osso M, Fagiolini A, Rotella F, Baroni S, Marazziti D: Glutamate system as target for development of novel antidepressants. CNS Spectr, 2013, 18, 188–198.

    Article  PubMed  Google Scholar 

  11. Chang FW, Wang SD, Lu KT, Lee EH: Differential interactive effects of gliotoxin and MPTP in the substantia nigra and the locus coeruleus in BALB/c mice. Brain Res Bull, 1993, 31, 253–266.

    Article  CAS  PubMed  Google Scholar 

  12. Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J: Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron, 1995, 15, 711–720.

    Article  CAS  PubMed  Google Scholar 

  13. Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E: Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology, 2006, 31, 1616–1626.

    Article  PubMed  CAS  Google Scholar 

  14. Damadzic R, Bigelow LB, Krimer LS, Goldenson DA, Saunders RC, Kleinman JE, Herman MM. A quantitative immunohistochemical study of astrocytes in the entorhinal cortex in schizophrenia, bipolar disorder and major depression: absence of significant astrocytosis. Brain Res Bull, 2001, 55, 611–618.

    Article  CAS  PubMed  Google Scholar 

  15. Edgar N, Sibille E: A putative functional role for oligodendrocytes in mood regulation. Transl Psychiatry, 2012, 2, e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fatemi SH, Laurence JA, Araghi-Niknam M, Stary JM, Schulz SC, Lee S, Gottesman II: Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res, 2004, 69, 317–323.

    Article  PubMed  Google Scholar 

  17. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B: Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry, 2009, 33, 70–75.

    Article  CAS  PubMed  Google Scholar 

  18. Gosselin RD, Gibney S, O’Malley D, Dinan TG, Cryan JF: Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience, 2009, 159, 915–925.

    Article  CAS  PubMed  Google Scholar 

  19. Hamidi M, Drevets WC, Price JL: Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry, 2004, 55, 563–569.

    Article  PubMed  Google Scholar 

  20. Hashimoto K, Sawa A, Iyo M: Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry, 2007, 62, 1310–1316.

    Article  CAS  PubMed  Google Scholar 

  21. Huck S, Grass F, Hatten ME: Gliotoxic effects of a-aminoadipic acid on monolayer cultures of dissociated postnatal mouse cerebellum. Neuroscience, 1984, 12, 783–791.

    Article  CAS  PubMed  Google Scholar 

  22. Huck S, Grass F, Hörtnagl H: The glutamate analogue a-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro. J Neurosci, 1984, 4, 2650–2657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. John CS, Smith KL, Van’t Veer A, Gompf HS, Carlezon WA Jr, Cohen BM, Öngür D, Bechtholt-Gompf AJ: Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology, 2012, 37, 2467–2475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khurgel M, Koo AC, Ivy GO: Selective ablation of astrocytes by intracerebral injections of α-aminoadipate. Glia, 1996, 16, 351–358.

    Article  CAS  PubMed  Google Scholar 

  25. Largo C, Cuevas P, Somjen GG, Martín del Río R, Herreras O: The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival. J Neurosci, 1996, 16, 1219–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee Y, Gaskins D, Anand A, Shekhar A: Glia mechanisms in mood regulation: a novel model of mood disorders. Psychopharmacology (Berl), 2007, 191, 55–65.

    Article  CAS  Google Scholar 

  27. Leventopoulos M, Rüedi-Bettschen D, Knuesel I, Feldon J, Pryce CR, Opacka-Juffry J: Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Res, 2007, 1142, 119–126.

    Article  CAS  PubMed  Google Scholar 

  28. Li LF, Yang J, Ma SP, Qu R: Magnolol treatment reversed the glial pathology in an unpredictable chronic mild stress-induced rat model of depression. Eur J Pharmacol, 2013, 711, 42–49.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC. Clomipramine treatment reversed the glial pathology in a chronic unpredictable stress-induced rat model of depression. Eur Neuropsychopharmacol, 2009, 19, 796–805.

    Article  CAS  PubMed  Google Scholar 

  30. Maciag D, Hughes J, O’Dwyer G, Pride Y, Stockmeier CA, Sanacora G, Rajkowska G: Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuro-imaging studies. Biol Psychiatry, 2010, 67, 465–470.

    Article  CAS  PubMed  Google Scholar 

  31. Manji HK, Drevets WC, Charney DS: The cellular neurobiology of depression. Nat Med, 2001, 7, 541–547.

    Article  CAS  PubMed  Google Scholar 

  32. Massart R, Mongeau R, Lanfumey L: Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos Trans R Soc Lond B Biol Sci, 2012, 367, 2485–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, Rajkowska G: Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry, 2000, 48, 861–873.

    Article  CAS  PubMed  Google Scholar 

  34. Miguel-Hidalgo JJ, Rajkowska G: Comparison of prefrontal cell pathology between depression and alcohol dependence. J Psychiatr Res, 2003, 37, 411–420.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R et al.: Preclinical models: status of basic research in depression. Biol Psychiatry, 2002, 52, 503–528.

    Article  PubMed  Google Scholar 

  36. Nichols NR, Osterburg HH, Masters JN, Millar SL, Finch CE: Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone treatment. Brain Res Mol Brain Res, 1990, 7, 1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura RN, Santos D, Fu ST, Dwyer BE: Induction of cell death by L-alpha-aminoadipic acid exposure in cultured rat astrocytes: relationship to protein synthesis. Neurotoxicology, 2000, 21, 313–320.

    CAS  PubMed  Google Scholar 

  38. Olney JW, de Gubareff T, Collins JF: Stereospecificity of the gliotoxic and anti-neurotoxic actions of a-aminoadipate. Neurosci Lett, 1980, 19, 277–282.

    Article  CAS  PubMed  Google Scholar 

  39. Olney JW, Ho OL, Rhee V: Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res, 1971, 14, 61–76.

    Article  CAS  PubMed  Google Scholar 

  40. Pannicke T, Stabel J, Heinemann U, Reichelt W: α-Aminoadipic acid blocks the Na+-dependent glutamate transport into acutely isolated Müller glial cells from guinea pig retina. Pflugers Arch, 1994, 429, 140–142.

    Article  CAS  PubMed  Google Scholar 

  41. Paul IA, Skolnick P: Glutamate and depression: clinical and preclinical studies. Ann NY Acad Sci, 2003, 1003, 250–272.

    Article  CAS  PubMed  Google Scholar 

  42. Rajkowska G, Miguel-Hidalgo JJ: Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets, 2007, 6, 219–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC et al.: Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry, 1999, 45, 1085–1098.

    Article  CAS  PubMed  Google Scholar 

  44. Rajkowska G, Stockmeier CA: Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets, 2013, 14, 1225–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodnight RB, Gottfried C: Morphological plasticity of rodent astroglia. J Neurochem, 2013, 124, 263–275.

    Article  CAS  PubMed  Google Scholar 

  46. Saffran BN, Crutcher KA: Putative gliotoxin, a-aminoadipic acid, fails to kill hippocampal astrocytes in vivo. Neurosci Lett, 1987, 81, 215–220.

    Article  CAS  PubMed  Google Scholar 

  47. Sanacora G, Banasr M: From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry, 2013, 73, 1172–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanacora G, Saricicek A: GABAergic contributions to the pathophysiology of depression and the mechanism of antidepressant action. CNS Neurol Disord Drug Targets, 2007, 6, 127–140.

    Article  CAS  PubMed  Google Scholar 

  49. Schroeter ML, Abdul-Khaliq H, Diefenbacher A, Blasig IE: S100B is increased in mood disorders and may be reduced by antidepressive treatment. Neuroreport, 2002, 13, 1675–1678.

    Article  CAS  PubMed  Google Scholar 

  50. Si X, Miguel-Hidalgo JJ, O’Dwyer G, Stockmeier CA, Rajkowska G: Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology, 2004, 29, 2088–2096.

    Article  CAS  PubMed  Google Scholar 

  51. Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R: Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry, 1996, 29, 23–26.

    Article  CAS  PubMed  Google Scholar 

  52. Takada M, Hattori T: Fine structural changes in the rat brain after local injections of gliotoxin, α-aminoadipic acid. Histol Histopathol, 1986, 1, 271–275.

    CAS  PubMed  Google Scholar 

  53. Trullas R, Skolnick P: Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol, 1990, 185, 1–10.

    Article  CAS  PubMed  Google Scholar 

  54. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI: Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res, 2004, 67, 269–275.

    Article  PubMed  Google Scholar 

  55. Vostrikov VM, Uranova NA, Orlovskaya DD: Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res, 2007, 94, 273–280.

    Article  PubMed  Google Scholar 

  56. Wierońska JM, Pilc A: Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int, 2009, 55, 85–97.

    Article  PubMed  CAS  Google Scholar 

  57. Yang J, Shen J: In vivo evidence for reduced cortical glutamate-glutamine cycling in rats treated with the anti-depressant/antipanic drug phenelzine. Neuroscience, 2005, 135, 927–937.

    Article  CAS  PubMed  Google Scholar 

  58. Zadrożna M, Nowak B, Łasoń-Tyburkiewicz M, Wolak M, Sowa-Kućma M, Papp M, Ossowska G et al.: Different pattern of changes in calcium binding proteins immunoreactivity in the medial prefrontal cortex of rats exposed to stress models of depression. Pharmacol Rep, 2011, 63, 1539–1546.

    Article  PubMed  Google Scholar 

  59. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry, 2006, 63, 856–864.

    Article  CAS  PubMed  Google Scholar 

  60. Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA: Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology, 2010, 58, 465–473.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Śmiałowska or Helena Domin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Śmiałowska, M., Szewczyk, B., Woźniak, M. et al. Glial degeneration as a model of depression. Pharmacol. Rep 65, 1572–1579 (2013). https://doi.org/10.1016/S1734-1140(13)71518-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71518-4

Key words

Navigation