Skip to main content

Effects of sildenafil treatment on the development of tolerance to diazepam-induced motor impairment and sedation in mice

Abstract

We studied the effects of sildenafil, a selective inhibitor of PDE5, on the development and the expression of tolerance to diazepam (DZ)-induced motor impairment and sedation in mice. DZ-induced motor incoordination was assessed by the rotarod and chimney tests, and DZ-induced sedation was examined using a photocell apparatus. Sildenafil treatment enhanced the development of tolerance to the motor impairing effects, but not to the sedative effects, of DZ. Sildenafil treatment did not affect the expression of tolerance to DZ-induced motor impairment and sedation in mice. Our results suggest that sildenafil treatment, at least in part, affects the development of DZ tolerance.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Allison C, Pratt JA: Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol Ther, 2003, 98, 171–195.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Abdel-Zaher AO, Hamdy MH, Aly SA, Abdel-Hady RH, Abdel-Rahman S: Attenuation of morphine tolerance and dependence by aminoguanidine in mice. Eur J Pharmacol, 2006, 540, 60–66.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Babey AM, Kolesnikov Y, Cheng J, Inturrisi CE, Trifilletti RR, Pasternak GW: Nitric oxide and opioid tolerance. Neuropharmacology, 1994, 33, 1463–1470.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Bateson AN: Basic pharmacologic mechanisms involved in benzodiazepine tolerance and withdrawal. Curr Pharm Des, 2002, 8, 5–21.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Bezerra MM, Lima V, Girao VCC, Teixeira RC, Graça JRV: Antinociceptive activity of sildenafil and adrenergic agents in the writhing test in mice. Pharmacol Rep, 2008, 60, 339–3444.

    CAS  PubMed  Google Scholar 

  6. 6.

    Bonavita CD, Bisagno V, Bonelli CG, Acosta GB, Rubio MC, Wikinski SI: Tolerance to the sedative effect of lorazepam correlates with a diminution in cortical release and affinity for glutamate. Neuropharmacology, 2002, 42, 619–625.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Bruckdorfer R: The basics about nitric oxide. Mol Aspects Med, 2005, 26, 3–31.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Dawson TD, Snyder SH: Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci, 1994, 14, 5147–5159.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Esplugues JV: NO as a signalling molecule in the nervous system. Br J Pharmacol, 2002, 135, 1079–1095.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Fernandes C, Arnot MI, Irvine EE, Bateson AN, Martin IL, File SE: The effect of treatment regimen on the development of tolerance to the sedative and anxiolytic effects of diazepam. Psychopharmacology, 1999, 145, 251–259.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Fernandes C, File SE: Dizolcipine does not prevent of tolerance to the anxiolytic effects of diazepam in rats. Brain Res, 1999, 815, 431–434.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    File SE: Tolerance to the behavioral actions of benzodiazepines. Neurosci Biobehav Rev 1985, 9, 113–121.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Gallager DW, Lakoski JM, Gonsalves SF, Rauch, SL: Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature, 1984, 308, 74–77.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Goldenberg MM: Safety and efficacy of sildenafil citrate in the treatment of male erectile dysfunction. Clin Ther, 1998, 20, 1033–1048.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Guevara-Guzman R, Emson CP, Kendrick KM: Modulation of in vivo striatal transmitter release by nitric oxide and cyclic GMP. J Neurochem, 1994, 62, 807–810.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Guix FX, Uribesalgo I, Coma M, Muñoz FJ: The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol, 2005, 76, 126–152.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Ignarro LJ: Heme-dependent activation of soluble guanylate cyclase by nitric oxide: regulation of enzyme activity by porphyrins and metalloporphyrins. Seminars Haematol, 1989, 26, 63–76.

    CAS  Google Scholar 

  18. 18.

    Jain NK, Patil CS, Singh A, Kulkarni SK: Sildenafilinduced peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Brain Res, 2001, 170–178.

    Google Scholar 

  19. 19.

    Katzung BG: Basic and clinical pharmacology. Appleton and Lange, Norwalk, CT, 1995.

    Google Scholar 

  20. 20.

    Khanna JM, Morato GS, Chau A, Shah G: Influence of nitric oxide synthase inhibition on the development of rapid tolerance to ethanol. Brain Res Bull, 1995, 37, 599–604.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Kippin TE, Pinell JJP, Kornecook TJ, Kalynchuk LE: Noncontingent drug exposure facilitates the development of contingent tolerance to the anticonvulsant effects of ethanol and diazepam in kindled rats. Pharmacol Biochem Behav, 1998, 61, 143–148.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Lue WM., Su MT, Lin WB, Tao PT: The role of nitric oxide in the development of morphine tolerance in rat hippocampal slices. Eur J Pharmacol, 1999, 383, 129–135.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Majeed NH, Przewłocka B, Machelska H, Przewłocki R: Inhibition of nitric oxide synthase attenuates the development of morphine tolerance and dependence in mice. Neuropharmacology, 1994, 33, 189–199.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Möhler H: GABA A receptor diversity and pharmacology. Cell Tissue Res, 2006, 326, 505–516.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Nidhi G, Bhargava VK, Pandhi P: Tolerance to and withdrawal from anticonvulsant action of diazepam: role of nitric oxide. Epilepsy Behav, 2000, 1, 262–270.

    PubMed  Article  Google Scholar 

  26. 26.

    Phillips BG, Kato M, Pesek CA, Winnicki M, Narkiewicz K, Davison D, Somers VK: Sympathetic activation by sildenafil. Circulation, 2000, 102, 3068–3073.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Quock RM, Nquyen E: Possible involvement of nitric oxide in chlordiazepoxide-induced anxiolysis in mice. Life Sci, 1992, 51, PL255–260.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Riazi K, Roshanpour M, Rafiei-Tabatabei N, Homayoun H, Ebrahimi F, Dehpour AR: The proconvulsant effect of sildenafil in mice: role of nitric oxide-cGMP pathway. Br J Pharmacol, 2006, 147, 935–943.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Segovia G, Porras A, Mora F: Effects of a nitric oxide donor on glutamate and GABA release in striatum and hippocampus of the conscious rat. NeuroReport, 1994, 5, 1937–1940.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Smith RL, Barrett RJ: Tolerance to the anticonflict effects of diazepam: Importance of methodological considerations. Pharmacol Biochem Behav, 1997, 58, 61–66.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Stephens DN: A glutamatergic hypothesis of drug dependence: extrapolations from benzodiazepine receptor ligands. Behav Pharmacol, 1995, 6, 425–446.

    CAS  PubMed  Google Scholar 

  32. 32.

    Tahsili-Fahadan P, Yahyavi-Firouz-Abadi N, Orandi AH, Esmaeili B, Basseda Z, Dehpour AR: Rewarding properties of sildenafil citrate in mice: role of the nitric oxidecyclic GMP pathway. Psychopharmacology, 2006, 185, 201–207.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Talarek S, Fidecka S: Involvement of nitricoxidergic system in the hypnotic effects of benzodiazepines in mice. Pol J Pharmacol, 2004, 56, 719–726.

    CAS  PubMed  Google Scholar 

  34. 34.

    Talarek S, Fidecka S: Role of nitric oxide in anticonvulsant effects of benzodiazepines in mice. Pol J Pharmacol, 2003, 55, 181–191.

    CAS  PubMed  Google Scholar 

  35. 35.

    Talarek S, Fidecka S: Role of nitric oxide in benzodiazepines-induced antinociception in mice. Pol J Pharmacol, 2002, 54, 27–34.

    CAS  PubMed  Google Scholar 

  36. 36.

    Talarek S, Listos J, Fidecka S: Role of nitric oxide in the development of tolerance to diazepam-induced motor impairment in mice. Pharmacol Rep, 2008, 60, 475–482.

    CAS  PubMed  Google Scholar 

  37. 37.

    Tallman JF, Gallager DW: The GABAergic system: a locus of benzodiazepine action. Annu Rev Neurosci, 1985, 8, 21–44.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Tietz EI, Rosenberg HC, Chiu TH: Audiographic localization of benzodiazepine receptor down regulation. J Pharmacol Exp Ther, 1986, 236, 284–292.

    CAS  PubMed  Google Scholar 

  39. 39.

    Ulhayathas S, Karuppagounder SS, Thrash BM, Parameshwaran K, Suppiramaniam V, Dhanasekaran M: Versatile effects of sildenafil: recent pharmacological applications. Pharmacol Rep, 2007, 59, 150–163.

    Google Scholar 

  40. 40.

    Uzbay IT, Oglesby MW: Nitric oxide and substance dependence. Neurosci Biobehav Rev, 2001, 25, 43–52.

    Article  Google Scholar 

  41. 41.

    van Rijnsoever C, Täuber M, Choulli MK, Keist R, Rudolph U, Möhler H, Fritschy JM, Crestani F: Requirement of α5-GABAA receptors for the development of tolerance to the sedative action of diazepam in mice. J Neurosci, 2004, 24, 6785–6790.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Valtschanoff JG, Weinberg RJ, Rustioni A, Schmidt HHHW: Nitric oxide synthase and GABAcolocalize in lamina 2 of rat spinal cord. Neurosci Lett, 1992, 148, 6–10.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Vogel HG, Vogel WH: Psychotropic and neurotropic activity. In: Drug discovery and evaluation. Pharmacological assays. Ed. Vogel HG, Vogel WH, Springer-Verlag, Berlin, Heidelberg, New York, 1997, 204–213.

    Chapter  Google Scholar 

  44. 44.

    Wafford KA: GABAA receptor subtypes: any clues to the mechanism of benzodiazepine dependence? Curr Opin Pharmacol, 2005, 5, 47–52.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Wazlawik E, Morato GS: Effect of intracerebroventricular administration of 7-nitroindazole on tolerance to ethanol. Brain Res Bull, 2002, 57, 165–170.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Zarri I, Bucossi G, Cupello A, Rapallino MV, Robello M: Modulation by nitric oxide of rat brain GABAA receptors. Neurosci Lett, 1994, 180, 239–242.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jolanta Orzelska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Talarek, S., Orzelska, J., Listos, J. et al. Effects of sildenafil treatment on the development of tolerance to diazepam-induced motor impairment and sedation in mice. Pharmacol. Rep 62, 627–634 (2010). https://doi.org/10.1016/S1734-1140(10)70320-0

Download citation

Key words

  • sildenafil
  • diazepam
  • tolerance
  • motor impairment
  • sedation
  • mice