Abstract
Energy efficiency is important in the performance of quadruped robots and mammals. Flexible spine motion generally exists in quadruped mammals. This paper mainly explores the effect of flexible spinal motion on energy efficiency. Firstly, a planar simplified model of the quadruped robot with flexible spine motion is introduced and two simulation experiments are carried out. The results of simulation experiments demonstrate that both spine motion and spinal flexibility can indeed increase energy efficiency, and the curve of energy efficiency change along with spinal stiffness is acquired. So, in order to obtain higher energy efficiency, quadruped robots should have flexible spine motion. In a certain speed, there is an optimal spinal stiffness which can make energy efficiency to be the best. Secondly, a planar quadruped robot with flexible spine motion is designed and the conclusions drawn in the two simulation experiments are verified. Lastly, the third simulation experiment is carried out to explore the relationship between the optimal spinal stiffness, speed and total mass. The optimal spinal stiffness increases with both speed and total mass, which has important guiding significance for adjusting the spinal stiffness of quadruped robots to make them reach the best energy efficiency.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mosher R S. Test and evaluation of a versatile walking truck. Proceedings of Off-road Mobility Research Symposium, Washington DC, USA, 1968, 359–379.
Raibert M H. Legged Robots that Balance, The MIT Press, Cambridge, Massachusetts, USA, 1986, 65–70.
Raibert M H, Wimberly F C. Tabular control of balance in a dynamic legged system. IEEE Transactions on Systems Man & Cybernetics, 1984, 14, 334–339.
Raibert M H, Blankespoor K, Nelson G. Bigdog, the rough-terrain quadruped robot. Proceedings of the 17th World Congress, Seoul, Korea, 2008, 10823–10825.
Spröwitz A, Tuleu A, Vespignani M. Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. International Journal of Robotics Research, 2013, 32, 932–950.
Poulakakis I, Smith J A, Buehler M. Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot. International Journal of Robotics Research, 2005, 24, 239–256.
Çulha U, Saranli U. Quadrupedal bounding with an actuated spinal joint. IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, 1392–1397.
Zhao Q, Sumioka H, Yu X, Nakajima K, Wang Z. The function of the spine and its morphological effect in quadruped robot locomotion. Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 2012, 66–71.
Zhang Z Q, Yang J L, Yu H. Effect of flexible back on energy absorption during landing in cats: A biomechanical investigation. Journal of Bionic Engineering, 2014, 11, 506–516.
Çulha U. An Actuated Flexible Spinal Mechanism for a Bounding Quadrupedal Robot, Bilkent university, Canterbury, UK, 2012, 11–20.
Pouya S, Khodabakhsh M, Moeckel R. Role of spine compliance and actuation in the bounding performance of quadruped robots. 7th Dynamic Walking Conference, Florida, USA, 2012, 259–264.
Folkertsma G A, Kim S, Stramigioli S. Parallel stiffness in a bounding quadruped with flexible spine. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2012, 2210–2215.
Hoyt D F, Taylor C R. Gait and the energetics of locomotion in horses. International Journal of Robotics Research, 2009, 29, 414–428.
Leeser K F. Locomotion Experiments on a Planar Quadruped Robot with Articulated Spine, Massachusetts Institute of Technology, Boston, USA, 1996, 15–30.
Haueisen B M. Investigation of an Articulated Spine in a Quadruped Robotic System, The University of Michigan, Ann Arbor, USA, 2011, 20–40.
Alexander R, Dimery N J, Ker R F. Elastic structures in the back and their role in galloping in some mammals. Journal of Zoology, 1985, 207, 467–482.
Gray J. How Animals Move, Cambridge University Press, London, UK, 1960, 45–54.
Ijspeert A J, Crespi A, Ryczko D. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 2007, 315, 1416–1420.
Khoramshahi M, Spröwitz A, Tuleu A, Ahmadabadi M N. Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot. Proceedings of IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, 3329–3334.
Eckert P, Sprowitz A, Witte H. Comparing the effect of different spine and leg designs for a small bounding quadruped robot. IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, 2015, 3128–3133.
Smith J A, Poulakakis I, Trentini M. Bounding with active wheels and liftoff angle velocity adjustment. The International Journal of Robotics Research, 2010, 29, 414–427.
Pouya S, Khodabakhsh M, Spröwitz A, Ijspeert A. Spinal joint compliance and actuation in a simulated bounding quadruped robot. Autonomous Robots, 2017, 41, 437–452.
Herr H M, Huang G T, McMahon T A. A model of scale effects in mammalian quadrupedal running. Journal of Experimental Biology, 2002, 205, 959–967.
Gabrielli G, Von T. What price speed? Specific power required for propulsion of vehicles. Mechanical Engineering, 1950, 72, 775–781.
Boszczyk B M, Boszczyk A A, Putz R. Comparative and functional anatomy of the mammalian lumbar spine. Anatomical Record, 2001, 264, 157–168.
Chen D L, Liu Q, Dong L T, Wang H. Effect of spine motion on mobility in quadruped running. Chinese Journal of Mechanical Engineering, 2014, 27, 1150–1156.
Herr H M, Huang G T, Mcmahon T A. A model of scale effects in mammalian quadrupedal running. Journal of Experimental Biology, 2002, 205, 959–967.
Kim Y K, Park J, Yoon B, Kim K, Kim S. The role of relative spinal motion during feline galloping for speed performance. Journal of Bionic Engineering, 2014, 11, 517–528.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, D., Li, N., Wang, H. et al. Effect of Flexible Spine Motion on Energy Efficiency in Quadruped Running. J Bionic Eng 14, 716–725 (2017). https://doi.org/10.1016/S1672-6529(16)60436-5
Published:
Issue Date:
DOI: https://doi.org/10.1016/S1672-6529(16)60436-5