Skip to main content

Biomimetic control of mechanical systems equipped with musculotendon actuators

Abstract

This paper addresses the problem of modelling, control, and simulation of a mechanical system actuated by an ago- nist-antagonist musculotendon subsystem. Contraction dynamics is given by case I of Zajac’s model. Saturated semi positive proportional-derivative-type controllers with switching as neural excitation inputs are proposed. Stability theory of switched system and SOSTOOLS, which is a sum of squares optimization toolbox of Matlab, are used to determine the stability of the obtained closed-loop system. To corroborate the obtained theoretical results numerical simulations are carried out. As additional contribution, the discussed ideas are applied to the biomimetic control of a DC motor, i.e., the position control is addressed assuming the presence of musculotendon actuators. Real-experiments corroborate the expected results.

This is a preview of subscription content, access via your institution.

References

  1. Zajac F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 1989, 17, 359–411.

    Google Scholar 

  2. Hill A V. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London B, Biological Sciences, 1938, 126, 136–195.

    Article  Google Scholar 

  3. Huxley A F. Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry, 1957, 7, 255–318.

    Google Scholar 

  4. Epstein M, Herzog W. Theoretical Models of Skeletal Muscle: Biological and Mathematical Considerations, John Wiley & Sons, New York, 1998.

    Google Scholar 

  5. He J, Levine W S, Loeb G E. Feedback gains for correcting small perturbations to standing posture. IEEE Transactions on Automatic Control, 1991, 36, 322–332.

    Article  MATH  Google Scholar 

  6. Martin C F, Schovanec L. Muscle mechanics and dynamics of ocular motion. Journal of Mathematical Systems, Estimation and Control, 1998, 8, 1–15.

    MathSciNet  MATH  Google Scholar 

  7. Menegaldo L L. Modelagem Biomecânicae Controle Ótimo da Postura Humana Através de Algoritmos Baseados na Teoria das Aproximações Consistentes, PhD, Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia Mecânica, Saõ Paulo, 2001. (in Portuguese)

    Google Scholar 

  8. Farahat W, Herr H. Workloop energetics of antagonist muscles. Proceedings of the 28th IEEE EMBS Annual International Conference, New York, USA, 2006, 3640–3643.

    Google Scholar 

  9. Winters J M, Stark L. Muscle models: What is gained and what is lost by varying model complexity. Biological Cybernetics, 1987, 55, 403–420.

    MathSciNet  Article  Google Scholar 

  10. Thelen D, Blemker S, Anderson C, Delp S. Dynamic Modeling and Simulation of Muscle-Tendon Actuators. Notes of the lecture ME 382: Modeling and Simulation of Human Movement, Stanford University, 2001.

    Google Scholar 

  11. Pandy M G, Zajac F E, Sim E, Levine W. An optimal control model for maximum-height human jumping. Journal of Biomechanics, 1990, 23, 1185–1198.

    Article  Google Scholar 

  12. Iqbal K, Roy A. Stabilizing PID controllers for a single-link biomechanical model with position, velocity, and force feedback. Journal of Biomechanical Engineering, 2004, 126, 838–843.

    Article  Google Scholar 

  13. Tahara K, Luo Z W, Arimoto S, Kino H. Sensory-motor control mechanism for reaching movements of a redundant musculo-skeletal arm. Journal of Robotic Systems, 2005, 22, 639–651.

    Article  MATH  Google Scholar 

  14. Moody C B, Barhorst A A, Schovanec L. A neuro-muscular elasto-dynamic model of the human arm part 2: Musculotendon dynamics and related stress effects. Journal of Bionic Engineering, 2009, 6, 108–119.

    Article  Google Scholar 

  15. Laczko J, Pilissy T, Tibold R. Neuro-mechanical modeling and controlling of human limb movements of spinal cord injured patients. Proceedings of the 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, Bratislava, Slovakia, 2009, 1–2.

    Google Scholar 

  16. Liberzon D. Switching in System and Control, Birkhäuser, Boston, USA, 2003.

    Book  MATH  Google Scholar 

  17. Beldiman O, Bushnell L. Stability, linearization and control of switched systems. Proceedings of the American Control Conference, San Diego, USA, 1999, 2950–2954.

    Google Scholar 

  18. Prajna S, Papachristodoulou A. Analysis of switched and hybrid systems-beyond piecewise quadratic methods. Pro- ceedings of the 2003 American Control Conference, Denver, USA, 2003, 2779–2784.

    Chapter  Google Scholar 

  19. Papachristodoulou A, Prajna S. A tutorial on sum of squares techniques for systems analysis. Proceedings of the 2005 American Control Conference, Portland, USA, 2005, 2686–2700.

    Google Scholar 

  20. Prajna S, Papachristodoulou A, Seiler P, Parrilo P A. SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, [2004-06-01], http://www.mit.edu/parrilo/sostools

  21. Bar-Cohen Y, Biomimetics: Biologically Inspired Technologies, CRC Press, Boca Raton, 2006.

    Google Scholar 

  22. Gottlieb G L, Agarwal G C. Dynamic relationship between isometric muscles tension and the electromyogram in man. Journal of Applied Physiology, 1971, 30, 345–351.

    Article  Google Scholar 

  23. Liberzon D, Morse S. Basic problems in stability and design of switched systems. IEEE Control Systems Magazine, 1999, 19, 59–70.

    Article  Google Scholar 

  24. Cavallaro E E, Rosen J, Perry J C, Burns S. Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Transactions on Biomedical Engineering, 2006, 53, 2387–2396.

    Article  Google Scholar 

  25. Baratta R, Solomonow M, Zhou B H, Letson D, Chuinard R, D’ Ambrosia R. Muscular Coactivation. The role of the antagonist musculature in maintaining knee stability. American Journal of Sports Medecine, 1988, 16, 113–122.

    Article  Google Scholar 

  26. Solomonow M, Baratta R, Zhou B H, D’ Ambrosia R. Electromyogram coactivation patterns of the elbow antagonist muscles during slow isokinetic movement. Experimental Neurology, 1988, 100, 470–477.

    Article  Google Scholar 

  27. Tsuji T, Tanaka Y, Morasso P, Sanguineti V, Kaneko M. Bio-mimetic trajectory generation of robots via artificial potential field with time base generator. IEEE Transactions on Systems, Man, and Cybernetic Part C: Applications, and Reviews, 2002, 32, 403–420.

    Article  Google Scholar 

  28. Hashimoto S, Narita S, Kasahara H, Takanishi A, Sugano S, Shirai H, Kobayashi T, Takanobu H, Kurata T, Fujiwara K, Matsuno T, Kawasaki T, Hoashi K. Humanoid robot-development of an information assistant robot hadaly. Proceedings of the 8th IEEE International Workshop on Robot and Human Communication, Pisa, Italy, 1997, 106–111.

    Google Scholar 

  29. Hirai K, Hirose M, Haikawa Y, Takenaka T. The development of honda humanoid robot. Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998, 1321–1326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Moreno-Valenzuela.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moreno-Valenzuela, J., Salinas-Avila, A. Biomimetic control of mechanical systems equipped with musculotendon actuators. J Bionic Eng 8, 56–68 (2011). https://doi.org/10.1016/S1672-6529(11)60011-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(11)60011-5

Keyword

  • biomimetic control
  • musculotendon dynamics
  • neural excitation
  • saturation
  • switched systems