Skip to main content
Log in

Caco-2 cell differentiation is associated with a decrease in stat protein levels and binding

  • Published:
Journal of Gastrointestinal Surgery

Abstract

Novel proteins of the Stat (signal transducers and activators of transcription) family have been associated with proliferation and differentiation of certain cells; the role of these transcription factors in gut differentiation has not been examined. The purpose of this study was to determine whether the cellular levels and actual binding of the Stat proteins are altered with intestinal differentiation using the Caco-2 cell line that spontaneously differentiates to a small bowel phenotype after confluency. We found that both Stat3 and Stat5 protein levels were increased in preconfluent and confluent Caco-2 cells; levels then decreased with postconfluency. Mobility shift assays demonstrated maximal binding of Stat3 and Stat5 at confluency and, similar to protein levels, binding activity decreased with postconfluency. The intestinal differentiation marker gene sucrase-isomaltase was increased by postconfluent day 1 with maximal levels by day 6. The progressive decrease of Stat3 and Stat5 protein levels and binding activity, occurring at a time associated with increased Caco-2 cell differentiation, suggests that a decrease in the cellular levels of these proteins may potentially play a role in subsequent intestinal cell differentiation. Delineating the cellular mechanisms responsible for intestinal differentiation is crucial to a better understanding of both normal gut development and aberrant gut growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordon JI, Schmidt GH, Roth KA. Studies of intestinal stem cells using normal, chimeric and transgenic mice. FASEB J 1992;6:3039–3050.

    PubMed  CAS  Google Scholar 

  2. Traber PG. Differentiation of intestinal epithelial cells: Lessons from the study of intestine-specific gene expression. J Lab Clin Med 1994;123:467–477.

    PubMed  CAS  Google Scholar 

  3. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat 1974;141:503–519.

    Article  PubMed  CAS  Google Scholar 

  4. Ponder BA, Schmidt GH, Wilkinson MAI, Wood MJ, Monk M, Reid A. Derivation of mouse intestinal crypts from single progenitor cells. Nature 1985;313:689–691.

    Article  PubMed  CAS  Google Scholar 

  5. Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994;264:1415–1421.

    Article  PubMed  CAS  Google Scholar 

  6. Taniguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 1995;268:251–255.

    Article  PubMed  CAS  Google Scholar 

  7. Ihle JN. Cytokine receptor signalling. Nature 1995;377:591–594.

    Article  PubMed  CAS  Google Scholar 

  8. Ivashkiv LB. Cytokines and STATs: How can signals achieve specificity? Immunity 1995;3:l-4.

    Article  Google Scholar 

  9. Ihle JN. STATs: Signal transducers and activators of transcription. Cell 1996;84:331–334.

    Article  Google Scholar 

  10. Schindler C, Darnell JE Jr.. Transcriptional responses to polypeptide ligands: The JAK/STAT pathway. Annu Rev Biochem 1995;64;621–651.

    Article  PubMed  CAS  Google Scholar 

  11. Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21WAF1/CIP1 mediated by Statl. Science 1996;272:719–722.

    Article  Google Scholar 

  12. Marra F, Choudhury GG, Abboud HE. Interferon-7-mediated activation of Statl α regulates growth factor-induced mitogenesis. J Clin Invest 1996;98:1218–1230.

    Article  Google Scholar 

  13. Chin YE, Kitagawa M, Kuida K, Flavell RA, Fu XY. Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol Cell Biol 1997;17:5328–5337.

    PubMed  CAS  Google Scholar 

  14. Taub R. Liver regeneration in health and disease. Clin Lab Med 1996;16:341–360.

    Google Scholar 

  15. Muli AL, Wakao H, Kinoshita T, Kitamura T, Miyajima A Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: Role of Stat5 in proliferation. EMBOJ 1996;15:2425–2433.

    Google Scholar 

  16. Yamanaka Y, Nakajima K, Fukada T, Hibi M, Hirano T. Differentiation and growth arrest signals are generated through the cytoplasmic region of gp 130 that is essential for Stat3 activation. EMBOJ 1996;15:1557–1565.

    Google Scholar 

  17. Barahmand-pour F, Meinke A, Kieslinger M, Eilers A, Decker T. A role for STAT family transcription factors in myeloid differentiation. Curr lop Microbiol Immunol 1996;211:121–128.

    Google Scholar 

  18. Xu X, Sonntag WE. Growth hormone-induced nuclear translocation of Stat-3 decreases with age: Modulation by caloric restriction. Am J Physiol 1996;271:E903-E909.

    Google Scholar 

  19. Pinto M, Robine-Leon S, Appay M-D, Kedinger M, Triadou N, Bussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 1983;47:323–330.

    Google Scholar 

  20. Schwab M, Alitalo K, Varmus HE, Bishop JM. A cellular oncogene (c-Ki-ras) is amplified, overexpressed, and located within karyotypic abnormalities in mouse adrenocortical tumour cells. Nature 1983;303:497–50l.

    Article  PubMed  CAS  Google Scholar 

  21. Wu GD, Wang W, Traber PG. Isolation and characterization of the human sucrase-isomaltase gene demonstration of intestine-specific transcriptional elements. J Biol Chem 1992;267:7863–7870.

    PubMed  CAS  Google Scholar 

  22. Wang S, Evers BM. Cytokine-mediated differential induction of hepatic activator protein-1 genes. Surgery 1998;123:191–198.

    PubMed  CAS  Google Scholar 

  23. Schreiber E, Matthias P, Muller MM, Schaffner W. Rapid detection of octamer binding proteins with ‘mini-extracts,’ prepared from a small number of cells. Nucl Acids Res 1989: 17:6419.

    Article  PubMed  CAS  Google Scholar 

  24. Wang S, Wolf SE, Evers BM. Differential activation of the Stat signaling pathway in the liver after burn injury. Am J Physiol 1997;273:G1153-G1159.

    PubMed  CAS  Google Scholar 

  25. Markowitz AJ, Wu GD, Bader A, Cui A, Chen L, Traber PG. Regulation of lineage-specific transcription of the sucrase-isomaltase gene in transgenic mice and cell lines. Am J Physiol 1995;269:G925-G939.

    PubMed  CAS  Google Scholar 

  26. Van Beers EH, A1 RH, Rings EH, Einerhand AW, Dekker J, Buller HA. Lactase and sucrase-isomaltase gene expression during Caco-2 cell differentiation. Biochem J 1995:308:769–775.

    PubMed  Google Scholar 

  27. Wagner BJ, Hayes TE, Hoban CJ, Cochran BH. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J 1990;9:4477–4484.

    PubMed  CAS  Google Scholar 

  28. Schmitt-Ney M, Doppler W, Ball RK, Groner B. β-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor. Mol Cell Biol 1991;11:374S-3755.

    Google Scholar 

  29. Ruff-Jamison S, Chen K, Cohen S. Induction by EGF and interferon-γ of tyrosine phosphorylated DNA binding proteins in mouse liver nuclei. Science 1993;261:1733–1736.

    Article  PubMed  CAS  Google Scholar 

  30. Zhong Z, Wen Z, Darnell JE Jr.. Stat3: A STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994;264:95–98.

    Article  PubMed  CAS  Google Scholar 

  31. Mui AL, Wakao H, O’Farrell AM, Harada N, Miyajima A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interieulrin-5 transduce signals through two Stat5 homologs. EMBO J 1995;14:1166–1175.

    PubMed  CAS  Google Scholar 

  32. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, Akira S. Stat3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Nad Acad Sci USA 1996;93:3963–3966.

    Article  Google Scholar 

  33. Bacon CM, Tortolani PJ, Shimosaka A, Rees RC, Longo DL, O’Shea JJ. Thrombopoietin (TPO) induces tyrosine phosphorylation and activation of Stat5 and Stat3. FEBS Lett 1995;370:63–68.

    Article  PubMed  CAS  Google Scholar 

  34. Wakao H, Schmitt-Ney M, Groner B. Mammary gland-specific nuclear factor is present in lactating rodent and bovine mammary tissue and composed of a single polypeptide of 89 kDa. J Biol Chem 1992;267:16365–16370.

    PubMed  CAS  Google Scholar 

  35. Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBOJ 1994;13:2182–2191.

    CAS  Google Scholar 

  36. Gouilleux F, Pallard C, Dusanter-Fourt I, Wakao H, Hal-dosen LA, Norstedt G, Levy D, Groner B. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBOJ 1995;14:2005–2013.

    CAS  Google Scholar 

  37. Ruff-Jamison S, Chen K, Cohen S. Epidermal growth factor induces the tyrosine phosphorylation and nuclear translocation of Stat5 in mouse liver. Proc Natl Acad Sci USA 1995;92:4215–4218.

    Article  PubMed  CAS  Google Scholar 

  38. Dajee M, Kazansky AV, Raught B, Hocke GM, Fey GH, Richards JS. Prolactin induction of the alpha 2-macroglobuhn gene in rat ovarian granulosa cells: Stat 5 activation and binding to the interleukin-6 response element. Mol Endocrinol 1996;10:171–184.

    Article  Google Scholar 

  39. Liu X, Robinson GW, Hennighausen L. Activation of Stat5a and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol Endocrinol 1996;10:1496–1506.

    Article  Google Scholar 

  40. Schimitt-Ney M, Happ B, Ball RK, Groner B. Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc Natl Acad Sci USA 1992;89:3130–3134.

    Article  Google Scholar 

  41. Li S, Rosen JM. Nuclear factor 1 and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol Cell Biol 1995;15:2063–2070.

    PubMed  CAS  Google Scholar 

  42. Burdon TG, Demmer J, Clark AJ, Watson CJ. The mammary factor MPBF is a prolactin-induced transcriptional regulator which binds to STAT factor recognition sites. FEBS Lett 1990;9:4477–4484.

    Google Scholar 

  43. Chretien S, Varlet P, Verdier F, Gobert S, Cartron JP, Gissel-brecht S, Mayeux P, Lacombe C. Erythropoietin-induced erythroid differentiation of the human erythroleukemia cell line TF-1 correlates with impaired STAT5 activation. EMBOJ 1991;11:3745–3755.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dr. Wang is a visiting scientist from the Department of Surgery, People’s Hospital, Beijing Medical University, Beijing, China.

Supported by grants R01 DK48498, R01 AG10885, and P01 DK356O8 from the National Institutes of Health and the James E. Thompson Memorial Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Evers, B.M. Caco-2 cell differentiation is associated with a decrease in stat protein levels and binding. J Gastrointest Surg 3, 200–207 (1999). https://doi.org/10.1016/S1091-255X(99)80034-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1091-255X(99)80034-1

Key words

Navigation