Skip to main content
Log in

Glutathione S-transferase-Pi expression is downregulated in patients with Barrett’s esophagus and esophageal adenocarcinoma

  • Published:
Journal of Gastrointestinal Surgery

Abstract

The glutathione S-transferases (GSTs) are a family of enzymes that play an important role in the prevention of cancer by detoxifying numerous potentially carcinogenic compounds. GSTs conjugate reduced glutathione to a variety of electrophilic and hydrophobic compounds, converting them into more soluble, more easily excretable compounds. Decreased glutathione S-transferase-pi (GSTPI) enzyme activity has been reported in Barrett’s esophagus, and an inverse correlation was demonstrated between GST enzyme activity and tumor incidence in the gastrointestinal tract, but the role of GSTPI messengerRNA (mRNA) expression in Barrett’s esophagus and associated adenocarcinomas is uncertain. The purpose of this study was to investigate the role of GSTPI mRNA and protein expression in the development and progression of the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence, and to investigate the potential of GSTPI quantitation as a biomarker in the clinical management of this disease. GSTPI mRNA expression levels, in relation to the housekeeping gene β-actin, were analyzed using a quantitative real-time reverse transcription-polymerase chain reaction method (TaqMan) in 111 specimens from 19 patients with Barrett’s esophagus without carcinoma (BE group), 21 patients with Barrett’s-associated adenocarcinoma (EA group), and a control group of 10 patients without evidence of Barrett’s esophagus or chronic gastroesophageal reflux disease. GSTPI mRNA expression was detectable in all 111 samples investigated. Analyzed according to histopathologic group, the median GSTPI mRNA expression was highest in normal squamous esophagus epithelium, intermediate in Barrett’s esophagus, and lowest in adenocarcinoma tissues (P < 0.001). The median GSTPI expression was significantly decreased in Barrett’s esophagus tissues compared to matching normal squamous esophagus from either the BE group (P = 0.001) or the EA group (P = 0.023). GSTPI expression levels in adenocarcinoma tissues were decreased compared to matching normal esophagus tissues from the patients with adenocarcinoma (P = 0.011). Furthermore, GSTPI mRNA expression values were significantly different between metaplastic, dysplastic, and adenocarcinoma tissues (P = 0.026). GSTPI expression levels were also significantly lower in histologically normal squamous esophagus tissues from patients with cancer (EA group) compared to both normal esophagus tissues from patients without cancer (BE group; P = 0.007) and normal esophagus tissues from the control group with no esophageal abnormality (P = 0.002). GSTPI protein expression was generally highest in the basal layer of normal squamous esophagus epithelium and lowest in adenocarcinoma cells, with Barrett’s cells showing intermediate staining intensity. Our results show that downregulation of GSTPI expression is an early event in the development of Barrett’s esophagus and esophageal adenocarcinoma. Loss of GSTPI expression may have an important role in the development and progression of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devesa SS, Blot WJ, Fraumeni JF. Changing patterns in the incidence of esophageal carcinoma in the United States. Cancer 1998;83:2049–2053.

    Article  PubMed  CAS  Google Scholar 

  2. Lord RV, Law MG, Ward RL, Giles GG, Thomas RJ, Thursfield V. Rising incidence of oesophageal adenocarcinoma in men in Australia. J Gastroenterol Hepatol 1998; 83:2049–2053.

    Google Scholar 

  3. Blot WJ, McLaughlin JK. The changing epidemiology of esophageal cancer. Semin Oncol 1999;26:2–8.

    PubMed  CAS  Google Scholar 

  4. Pera M, Cameron AJ, Trastek VF, Carpenter HA, Zins-meister AR. Increasing incidence of adenocarcinoma of the esophagus and esophagogastric junction. Gastroenterology 1993;104:510–513.

    PubMed  CAS  Google Scholar 

  5. Williamson WA, Ellis FH, Gibb SP, Shanian DN, Aretz HT, Heatly GJ, Watkins E. Barrett’s esophagus: Prevalence and incidence of adenocarcinoma. Arch Intern Med 1991; 151:2212–2216.

    Article  PubMed  CAS  Google Scholar 

  6. Cameron AJ, Lomboy CT. Barrett’s esophagus: Age, prevalence, and extent of the columnar epithelium. Gastroenterology 1992;103:1241–1245.

    PubMed  CAS  Google Scholar 

  7. Barrett MT, Sanchez CA, Prevo LJ, Wong DJ, Galipeau PC, Paulson TG, Rabinovitch PS, Reid BJ. Evolution of neoplastic cell lineages in Barrett’s esophagus. Nat Genet 1999;22:106–109.

    Article  PubMed  CAS  Google Scholar 

  8. Drewitz DJ, Sampliner RE, Garewal HS. The incidence of adenocarcinoma in Barrett’s esophagus: A prospective study of 170 patients followed 4.8 years. Am J Gastroenterol 1997;92:212–215.

    PubMed  CAS  Google Scholar 

  9. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: Regulation of GST and contribution of the isoenzymes to cancer chemoprevention and drug resistance. Crit Rev Biochem Mol Biol 1995;30:445–600.

    PubMed  CAS  Google Scholar 

  10. Morrow CS, Cowan CH, Goldsmith ME. Structure of the human genomic glutathione S-transferase-π gene. Gene 1989;75:3–11.

    Article  PubMed  CAS  Google Scholar 

  11. Beckett GJ, Hayes JD. Glutathione S-transferases: Biomedical applications. Adv Clin Chem 1993;30:281–380.

    PubMed  CAS  Google Scholar 

  12. Tsuchida S, Sato K. Glutathione transferases and cancer. Crit Rev Biochem Mol Biol 1992;27:337–384.

    PubMed  CAS  Google Scholar 

  13. Peters WHM, Kock L, Nagengast FM, Kremers PG. Biotransformation enzymes in human intestine: Critical levels in the colon? Gut 1991;32:408–412.

    Article  PubMed  CAS  Google Scholar 

  14. Peters WHM, Nagengast FM, Van Tongeren JHM. Glutathione S-transferase, cytochrome P450, and uridine 5’diphosphate-glucuronosyltrasnferase in human small intestine and liver. Gastroenterology 1989;96:783–789.

    PubMed  CAS  Google Scholar 

  15. Peters WHM, Roelofs HMJ, Hectors MPC, Nagengast FM, Jansen JBMJ. Glutathione and glutathione S-transferases in Barrett’s epithelium. Br J Cancer 1993;67:1413–1417.

    PubMed  CAS  Google Scholar 

  16. De Bruin WCC, Wagenmans MJM, Peters WHM. Expression of glutathione S-transferase α, P1-1 and T1-1 in the human gastrointestinal tract. Jpn J Cancer Res 2000;91:310–316.

    PubMed  Google Scholar 

  17. Seidegrad J, Pero RW, Markowitz MM, Roush G, Miller DG, Beattie EJ. Isoenzymes of glutathione S-transferases (class μ) as a marker for susceptibility for lung cancer: A follow-up study. Carcinogenesis 1991; 1:33–36.

    Google Scholar 

  18. Chevenix-Trench G, Young J, Coggan M, Board P. Glutathione S-transferase M1, and T1 polymorphism: Susceptibility to colon cancer and the age of onset. Carcinogenesis 1995;16:1655–1657.

    Article  Google Scholar 

  19. Deakin M, Elder J, Hendrickse C, Peckham D, Baldwin D, Pantin C, Wild N, Leopard P, Bell DA, Jones P, Duncan H, Brannigan K, Alldersea J, Fryer AA, Strange RC. Glutathione S-transferase GSTT1 genotype and susceptibility to cancer: Studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers. Carcinogenesis 1996; 17:881–884.

    Article  PubMed  CAS  Google Scholar 

  20. Van Lieshout EM, Tiemessen DM, Witteman BJM, Peters WHM. Low glutathione and glutathione S-tranferase levels in Barrett’s esophagus as compared to normal esophagus epithelium. Jpn J Cancer Res 1999;90:81–85.

    PubMed  Google Scholar 

  21. Compton KR, Orringer MB, Beer DG. Induction of glutathione S-transferase-π in Barrett’s metaplasia and Barrett’s adenocarcinoma cell lines. Mol Carcinog 1999;24:128–136.

    Article  PubMed  CAS  Google Scholar 

  22. Ishioka C, Kanamaru R, Shibata H, Konishi Y, Ishikawa A, Wakui A, Sato T, Nishihira T. Expression of glutathione S-transferase-pi messenger RNA in human esophageal cancers. Cancer 1991;67:2560–2564.

    Article  PubMed  CAS  Google Scholar 

  23. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156–159.

    Article  PubMed  CAS  Google Scholar 

  24. Lord RV, Salonga D, Danenberg KD, Peters JH, De-Meester TR, Park JM, Johannson J, Skinner KA, Chandrasoma P, DeMeester SR, Bremner CG, Tsai PI, Danenberg PV. Telomerase reverse transcriptase expression is increased early in the Barrett’s metaplasia, dysplasia, carcinoma sequence. J Gastrointest Surg 2000;4:135–142.

    Article  PubMed  CAS  Google Scholar 

  25. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res 1996;6:986–994.

    Article  PubMed  CAS  Google Scholar 

  26. Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res 1996; 6:995–1001.

    Article  PubMed  CAS  Google Scholar 

  27. Brabender J, Lord RV, Danenberg KD, Metzger R, Schneider PM, Uetake H, Kawakami K, Park JM, Salonga D, Peters JH, DeMeester TR, Hölscher AH, Danenberg PV. Upregulation of ornithine decarboxylase mRNA expression in Barrett’s esophagus and Barrett’s associated adenocarcinoma. J Gastrointest Surg 2001;5:174–182.

    Article  PubMed  CAS  Google Scholar 

  28. Rabinovitch PS, Reid BJ, Haggitt RC, Norwood TH, Rubin CE. Progression to cancer in Barrett’s esophagus is associated with genomic instability. Lab Invest 1989;60:65–71.

    PubMed  CAS  Google Scholar 

  29. Reid BJ, Blount PL, Rubin CE, Levine DS, Haggitt RC, Rabinovitch PS. Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: Prospective endoscopic surveillance of a cohort. Gastroenterology 1992; 102:1212–1219.

    PubMed  CAS  Google Scholar 

  30. Reid BJ, Barrett MT, Galipeau PC, Sanchez CA, Neshat K, Cowan DS, Levine DS. Barrett’s esophagus: Ordering the events that lead to cancer. Eur J Cancer Prev 1996;2:57–65.

    Article  Google Scholar 

  31. Eads CA, Lord RV, Wickramasinghe K, Long TL, Kurum-boor SK, Bernstein L, Peters JH, DeMeester SR, De-Meester TR, Skinner KA, Laird PW. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res 2001;61:3410–3418.

    PubMed  CAS  Google Scholar 

  32. Van Lieshout EM, Roelofs HM, Dekker S, Mulder CJ, Wobbes T, Jansen JB, Peters WH. Polymorphic expression of the glutathione S-transferase PI gene and its susceptibilty to Barrett’s esophagus and esophageal carcinoma. Cancer Res 1999;59:586–589.

    PubMed  Google Scholar 

  33. Laird PW, Jaenisch R. The role of DNA methylation in cancer genetics and epigenetics. Annu Rev Genet 1996;30:441–446.

    Article  PubMed  CAS  Google Scholar 

  34. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: A fundamental aspect of neoplasia. Adv Cancer Res 1998;72:141–196.

    Article  PubMed  CAS  Google Scholar 

  35. Schneider PM, Casson AG, Levin B, Garewal HS, Hoelscher AH, Becker K, Dittler HJ, Cleary KR, Troster M, Siewert JR, Roth JA. Mutations of p53 in Barrett’s esophagus and Barrett’s cancer: A prospective study of ninety-eight cases. J Thorac Cardiovasc Surg 1996;111:323–333.

    Article  PubMed  CAS  Google Scholar 

  36. Hayashi K, Metzger R, Salonga D, Danenberg K, Leich-man LP, Fink U, Sendler A, Kelsen D, Schwartz GK, Groshen S, Lenz HJ, Danenberg PV. High frequency of simultaneous loss of p16 and p16beta gene expression in squamous cell carcinoma of the esophagus but not adenocarcinoma of the esophagus or stomach. Oncogene 1997;15:1481–1488.

    Article  PubMed  CAS  Google Scholar 

  37. Lord RV, Tsai PI, Danenberg KD, Peters JH, DeMeester TR, Tsao-Wei DD, Groshen S, Salonga D, Park JM, Crookes PF, Kiyabu M, Chandrasoma P, Danenberg PV. Retinoic acid receptor-α messenger RNA expression is increased and retinoic acid receptor-γ is decreased in Barrett’s intestinal metaplasia, dysplasia, adenocarcinoma sequence. Surgery 2001;129:267–276.

    Article  PubMed  CAS  Google Scholar 

  38. Brabender J, Lord RV, Danenberg KD, Metzger R, Schneider PM, Park JM, Salonga D, Groshen S, Tsai-Wei DD, De-Meester TR, Hölscher AH, Danenberg PV. Increased c-myb mRNA expression in Barrett’s esophagus and Barrett’s associated adenocarcinoma. J Surg Res 2001;99:301–306.

    Article  PubMed  CAS  Google Scholar 

  39. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW. Methylight: A highthroughput assay to measure DNA methylation. Nucleic Acids Res 2000;28:E32.

    Article  PubMed  CAS  Google Scholar 

  40. Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, Peters JH, DeMeester TR, Danen-berg KD, Danenberg PV, Laird PV. Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 2000;60:5021–5026.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Brabender M.D..

Additional information

Supported by the Burda Foundation for Cancer Research, Germany (J.B.), the American Cancer Society, and the STOP Cancer Foundation (R.V.L.), and by grant RO1 CA 71716 (P.V.D.) from the National Cancer Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brabender, J., Lord, R.V., Wickramasinghe, K. et al. Glutathione S-transferase-Pi expression is downregulated in patients with Barrett’s esophagus and esophageal adenocarcinoma. J Gastrointest Surg 6, 359–367 (2002). https://doi.org/10.1016/S1091-255X(02)00003-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1091-255X(02)00003-3

Key words

Navigation