Skip to main content
Log in

PI-3’ kinase and NF-ΚB cross-signaling in human pancreatic cancer cells

  • Published:
Journal of Gastrointestinal Surgery

Abstract

Because tumor necrosis factor-alpha (TNF-α) and some chemotherapeutic agents activate both apoptosis andNF-κB-dependent antiapoptotic genes, they may neutralize their own antitnmor effects. The cell-signaling mechanisms for such chemoresistance are not clear but may involve phosphotidylinositol 3′ kinase (PI3K). To clarify this we examined whether cross-signaling between PI3K and NF-κ B enhances the antitnmor effect of TNF-α in human pancreatic cancer cells. Quiescent pancreatic cancer cells (Pant-1, MiaPaCa-2) with TNF-α, Ly294002 (PI3K inhibitor), alone or combined, were restimulated with mitogen (10% fetal calf serum [FCS] to induce cell cycle entry). Proliferation (monotetrazolium), cell cycle progression (ApoBrDU and fluorescence-activated cell sorter analysis), and apoptosis (PARP cleavage; caspase-3 activation) were measured. Akt activation (Akt kinase assay) and IKB~ degradation were determined by Western blot analysis. Translocation of NF-κ B into the nucleus was examined by EMSA, whereas an NF-κ B/hiciferase reporter gene was used to quantify NF-κ B-dependent gene expression. Statistical analysis was carried out by means of two-tailed t test (P <0.05). PI3K inhibition significantly enhanced the antiproliferative and proapoptotic effects of TNF-α in both cell lines. Ly294002 also blocked TNF-α -induced Akt activation but failed to alter cytoplasmic IκBα degradation or subsequent NF-κ B nuclear translocation. NF-κ B-dependent gene expression, however, was ultimately suppressed by Ly294002, suggesting that PI3k-dependent activation of NF-κ B is Iκ Bα independent. PI3K inhibition can block NF-κ B-dependent gene expression regardless of cytoplasmic IKBNF-κ B activation. Because it also regulates the antitumor effects of TNF-α PI3K may in part determine NF-κ B-induced chemoresistance in human pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perugini RA, McDade TP, Vittimberga FJ, Callery Mp. The molecular and cellular biology of pancreatic cancer. Crit Rev Eukaryot Gene Expr 1998;8:377–393.

    PubMed  CAS  Google Scholar 

  2. McDade TP, Perugini RA, Vmimberga FJ, Callery MP. Ubiquitin-proteasome inhibition enhances apoptosis of human pancreatic cancer cells. Surgery 1999;126:371–377.

    PubMed  CAS  Google Scholar 

  3. Wang CY, Mayo MW, Baldwin AS. TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-κ B. Science 1996;274:784–787.

    Article  PubMed  CAS  Google Scholar 

  4. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS. NF-κ B antiapoptosis: Induction of TRAFl and TRAFZ and c-LAP1 and c-LAP2 to suppress caspase-8 activation. Science 1998;281:1680–1683.

    Article  PubMed  CAS  Google Scholar 

  5. Verma IM, Stevenson JK, Schwarz EM, Antwerp D, Miyamoto S. Rel/NF-κ B/I κ B family: Intimate tales of association and dissociation. Genes Dev 1995;9:2723–2735.

    Article  PubMed  CAS  Google Scholar 

  6. Beg AA, Finco TS, Nantermet PV, Baldwin AS. Tumor necrosis factor and interleukin-I lead to phosphorylation and loss to Iκ Bα: A mechanism for NF-κ B activation. Mol Cell Biol 1993;13:3301–3310.

    PubMed  CAS  Google Scholar 

  7. Naumann M, Scheidereit C. Activation of NF-κ B in vivo is regulated by multiple phosphorylations. EMBO J 1994;13:4597–4607.

    PubMed  CAS  Google Scholar 

  8. Hara K, Yonezawa K, Sakaue H, Ando A, Kotani K, Kitamura T, Kitamura Y, Ueda H, Stevens L, Jackson TR, et al.. 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc Natl Acad Sci USA 1994;91:7415–7419.

    Article  PubMed  CAS  Google Scholar 

  9. Pfeffer LM, Mullerson JE, Pfeffer SR, Murti A, Shi W, Yang CH. Stat3 as an adaptor to couple phosphatidylinositol 3-kinase to the IFNARl chain of the type 1 interferon receptor. Science 1997;276:1418–1420.

    Article  PubMed  CAS  Google Scholar 

  10. Franke TF, Kaplan DR, Cantley LC. PI3K: Downstream AKTion blocks apoptosis. Cell 1997;88:435–437.

    Article  PubMed  CAS  Google Scholar 

  11. Marte BM, Downward J. PKB/Akt: Connecting phosphoinositol 3-kinase to cell survival and beyond. Trends Biochem Sci 1997;22:355–358.

    Article  PubMed  CAS  Google Scholar 

  12. Carpenter CL, Cantley LC. Phosphoinositide kinases. Curr Opin Cell Biol 1996;8:153–157.

    Article  PubMed  CAS  Google Scholar 

  13. Toker A, Meyer M, Reddy KK, Falck JR, Aneja R, Aneja S, Parra A, Bums DJ, Ballas LM, Cantley LC. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem 1994; 269:32358–32367.

    PubMed  CAS  Google Scholar 

  14. Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Adams J, Elliott PJ, Callery MP. 26s proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 2001;82:110–122.

    Article  PubMed  CAS  Google Scholar 

  15. Wang D, Baldwin AS. Activation of nuclear factor-KB-dependent transcription by tnmor necrosis factor-a is mediated through phosphorylation of RelA/p65 on serine 529. J Biol Chem 1998;273:29411–29416.

    Article  PubMed  CAS  Google Scholar 

  16. Reddy SAG, Huang JH, Liao WSL. Phosphatidylinositol 3-kinase in interleukin 1 signaling: Physical interaction with the interleukin 1 receptor and requirement in NFkB and AP-1 activation. J Biol Chem 1997;272:29167–29173.

    Article  PubMed  CAS  Google Scholar 

  17. Reddy SAG, Huang JH, Liao WSL. Phosphatidylinositol 3-kinase as a mediator of TNF-induced NF-κ B activation. J 1mmuno1 2000;164:1355–1363.

    CAS  Google Scholar 

  18. Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-κ B p65/Rel A subunit. Mol Cell Biol 1999;19:4798–4805.

    PubMed  CAS  Google Scholar 

  19. Perugini RA, McDade TP, Vittimberga FJ, Callery MP. Pancreatic cancer cell proliferation is phosphatidylinositol 3-kinase dependent. J Surg Res 2000;90:39–44.

    Article  PubMed  CAS  Google Scholar 

  20. Shah SA, Potter MW, Ricciardi R, Perugini RA, Callery MP. FRAP-p70s6K signaling is required for pancreatic cancer cell proliferation. J Surg Res 2001;97:123–130.

    Article  PubMed  CAS  Google Scholar 

  21. Klampfer L, Cammenga J, Wisniewski HG, Nimer SD. Sodium salicylate activates caspases and induces apoptosis of myeloid leukemia cell lines. Blood 1999;93:2386–2394.

    PubMed  CAS  Google Scholar 

  22. Fisher DE. Apoptosis in cancer therapy: Crossing the threshold. Cell 1994;78:539–543.

    Article  PubMed  CAS  Google Scholar 

  23. Finco TS, Baldwin AS. Kappa B site-dependent induction of gene expression by diverse inducers of nuclear factor kappa B requires Raf-1. J Biol Chem 1993;268:17676–17679.

    PubMed  CAS  Google Scholar 

  24. Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS. Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem 1997;272:24113–24116.

    Article  PubMed  CAS  Google Scholar 

  25. Madrid LV, Wang CY, Guttridge DC, Schottelius AJG, Bald-win AS, Mayo MW. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kB. Mol Cell Biol 2000;20:1626–1638.

    Article  PubMed  CAS  Google Scholar 

  26. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD. Activation of nuclear transcription factor NF-kappaB by interletnl is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem 1997;272:32606–32612.

    Article  PubMed  CAS  Google Scholar 

  27. Kane LP, Shapiro VS, Stokoe D, Weiss A. Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 1999;9:601–604.

    Article  PubMed  CAS  Google Scholar 

  28. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401:82–85.

    Article  PubMed  CAS  Google Scholar 

  29. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature 1999;401:86–90.

    Article  PubMed  CAS  Google Scholar 

  30. Bergmann M, Hart L, Lindsay M, Barnes PJ, Newton R. Iκ Bα degradation and nuclear factor-B DNA binding are insufficient for interleukin-IB and tumor necrosis factor-o-induced B-dependent transcription. J Biol Chem 1997;273:6607–6610.

    Article  Google Scholar 

  31. Sontag E, Sontag JM, Garcia A. Protein phosphatase 2A is a critical regulator of protein kinase C 5 signaling targeted by SV40 small t to promote cell growth and NF-κ B activation. EMBOJ 1997;16:5662–5671.

    Article  CAS  Google Scholar 

  32. Lee FS, Hagler J, Chen ZJ, Maniatis T. Activation of the IkB kinase complex by MEKKl, a kinase of the JNK pathway. Cell 1997;88:213–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Callery M.D., F.A.C.S..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, S.A., Potter, M.W., Hedeshian, M.H. et al. PI-3’ kinase and NF-ΚB cross-signaling in human pancreatic cancer cells. J Gastrointest Surg 5, 603–613 (2001). https://doi.org/10.1016/S1091-255X(01)80102-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1091-255X(01)80102-5

Key words

Navigation