Skip to main content
Log in

The gut and food intake: An update for surgeons

  • Published:
Journal of Gastrointestinal Surgery

Abstract

Food intake is the simplest and most obvious measure of gastrointestinal function, yet it rarely receives more than cursory attention from surgeons. In this review we cover recent findings on relationships between gut function and appetite regulation mediated via neuropeptides influenced by afferent and efferent vagal activity. Evidence from the new discipline known as neurogastroenterology elucidates gastric and intestinal signals involved in the elicitation of hunger, satiety, and aversion. Discovery of the adipose-tissue-derived hormone, leptin, has energized the field of metabolism spawning increasing numbers of publications related to interactions between leptin and insulin release and glucose disposal, as well as appetitive behavior. Peptides such as cholecystokinin (CCK), the proglucagon-derived peptides, glucagon-like peptides 1 and 2 (GLP-1 and GLP-2), and the recently identified powerful intake-stimulating molecule, orexin, are examples of potential targets for drug development and studies of surgical pathophysiology. A major conclusion of this work is that the considerable redundancy and overlap between mediators of caloric intake subserving survival of the species, while beneficial after foregut surgery, contribute to the complexity of treating the global epidemic of obesity. Possibly knowledge derived from basic research in neurogastroenterology can translate into advances in surgical treatment of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood JD, Alpers DH, Andrews PL. Fundamentals of neurogastroenterology. Gut 1999;45(Suppl 2):II6-II16.

    Article  PubMed  Google Scholar 

  2. Kirchgessner AL, Liu M. Orexin synthesis and response in the gut. Neuron 1999;24:941–951.

    Article  PubMed  CAS  Google Scholar 

  3. Jin SLC, Han VKM, Simmons JG, Towle AC, Lauder JM, Lund PK. Distribution of glucagonlike peptide-I (GLP-I), glucagon, and glicentin in the rat brain: An immunocyto-chemical study. J Comp Neurol 1988;271:519–532.

    Article  PubMed  CAS  Google Scholar 

  4. Geiselman PJ. Control of food intake. A physiologically complex, motivated behavioral system. Endocrinol Metab Clin North Am 1996;25:815–829.

    Article  PubMed  CAS  Google Scholar 

  5. Tang-Christensen M, Larsen PJ, Thulesen J, Romer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 2000;6:802–807.

    Article  PubMed  CAS  Google Scholar 

  6. Briining JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Mfiller-Weiland D, Kahn RC. Role of brain insulin receptor in control of body weight and reproduction. Science 2000;289:2122–2125.

    Article  Google Scholar 

  7. Pheng LH, Regoli D. Receptors for NPY in peripheral tissues bioassays. Life Sci 2000;67:847–862.

    Article  PubMed  CAS  Google Scholar 

  8. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999;20:68–100.

    Article  PubMed  CAS  Google Scholar 

  9. Blundell JE, Lawton CL, Hill AJ. Mechanisms of appetite control and their abnormalities in obese patients. Horm Res 1993;39(Suppl 3):72–76.

    PubMed  Google Scholar 

  10. Smith GP, Gibbs J. The effect of gut peptides on hunger, satiety, and food intake in man. Ann NY Acad Sci 1997;499:132–136.

    Article  Google Scholar 

  11. Mei N, Lucchini S. Current data and ideas on digestive sensitivity. J Auton Nerv Sys 1992;41:15–18.

    Article  CAS  Google Scholar 

  12. Read NW. Feedback regulation and sensation. Dig Dis Sci 1994;39(12 Suppl):37S-40S.

    PubMed  CAS  Google Scholar 

  13. Heatherington MM. In what way is eating disordered in the eating disorders. Int Rev Psych 1993;5:33–50.

    Google Scholar 

  14. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson ML, Reiman EM, Ravussin E. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Nail Acad Sci USA 1999;96:4569–4574.

    Article  CAS  Google Scholar 

  15. Friedman JM. Obesity in the new millennium. Nature 2000; 404:632–634.

    PubMed  CAS  Google Scholar 

  16. Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M, Le Marchand-Brustel Y, Lewin MJ. The stomach is a source of leptin. Nature 1998;394:790–793.

    Article  PubMed  CAS  Google Scholar 

  17. McHugh PR, Moran TH. Calories and gastric emptying: A regulatory capacity with implications for feeding. AmJ Physiol 1979;236:R254-R260.

    CAS  Google Scholar 

  18. Horowitz M, Jones K, Edelbroek MA, Smout AJ, Read NW. The effect of posture on gastric emptying and intragastric distribution of oil and aqueous meal components and appetite. Gastroenterology 1993;105:382–390.

    PubMed  CAS  Google Scholar 

  19. Carney BI, Jones KL, Horowitz M, Sun WM, Penagini G, Meyer JH. Gastric emptying of oil and aqueous meal components in pancreatic insufficiency: Effects on posture and on appetite. AmJ Physiol 1995;268:G925-G932.

    CAS  Google Scholar 

  20. Bergmann JF, Chassany O, Petit A, Triki R, Caulin C, Seg-restaa JM. Correlation between echographic gastric emptying and appetite: Influences of psyllium. Gut 1992;33:1042–1043.

    PubMed  CAS  Google Scholar 

  21. Rigaud D, Trostler N, Rozen R, Vallot T, Apfelbaum M. Gastric distention, hunger and energy intake after balloon implantation in severe obesity. Int J Obes Relat Metab Disord 1995;19:489–495.

    PubMed  CAS  Google Scholar 

  22. Feinle C, Grundy D, Read NW. Effects of duodenal nutrients on sensory and motor responses of the human stomach to distension. AmJ Physiol 1997;273:G721-G726.

    CAS  Google Scholar 

  23. Shafer RB, Levine AS, Marlette JM, Morley JE. Effects of xylitol on gastric emptying and food intake. Am J Clin Nutr 1987;45:744–747.

    PubMed  CAS  Google Scholar 

  24. French SJ, Read NW. Effect of guar gum on hunger and satiety after meals of differing fat content: Relationship with gastric emptying. AmJ Clin Nutr 1994;59:87–91.

    CAS  Google Scholar 

  25. Benini L, Brighenti F, Castellani G, Brentegani MT, Casir-aghi MC, Ruzzenente O, Sembenini C, Pellegrini N, Caliari S, Porrini M. Gastric emptying of solids is markedly delayed when meals are fried. Dig Dis Sci 1994;39:2288–2294.

    Article  PubMed  CAS  Google Scholar 

  26. Jones KL, Doran SM, Hveem K, Bartholomeusz FDL, Morely JE, Sun WM, Chatterton BE, Horowitz M. Relation between postprandial satiation and antral area in normal subjects. AmJ Clin Nutr 1997;66:127–132.

    CAS  Google Scholar 

  27. Koopmans HS. A stomach hormone that reduces food intake. J Auton Nerv Syst 1983;9:157–171.

    Article  PubMed  CAS  Google Scholar 

  28. Gutzwiller JP, Drewe J, Hildebrand P, Rossi L, Lauper JZ, Beglinger C. Effect of intravenous human gastric-releasing peptide on food intake in humans. Gastroenterology 1994; 106:1168–1173.

    PubMed  CAS  Google Scholar 

  29. Lieverse RJ, Jansen JB, Masclee AM, Lamers CB. Effects of somatostatin on human satiety. Neuroendocrinology 1995; 61:112–116.

    PubMed  CAS  Google Scholar 

  30. Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M, Le Marchand-Brustel Y, Lewin MJM. The stomach is a source of leptin. Nature 1998;394:790–793.

    Article  PubMed  CAS  Google Scholar 

  31. Breidert M, Miehlke S, Glasow A, Orban Z, Stolte M, Ehninger G, Bayerdoffer E, Nettesheim O, Halm U, Haidan A, Bornstein SR. Leptin and its receptor in normal human gastric mucosa and in Helicobacter pylori-associated gastritis. ScandJ Gastroenterol 1999;34:954–961.

    Article  CAS  Google Scholar 

  32. Flier JS, Maratos-Flier E. Obesity and the hypothalamus: Novel peptides for new pathways. Cell 1998;92:437–440.

    Article  PubMed  CAS  Google Scholar 

  33. Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998;393:72–76.

    Article  PubMed  CAS  Google Scholar 

  34. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozowski GP, Wil-son S, Arch JR, Buckingham RE, Haynes AC, Carr SA, An-nan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexin and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92:573–585.

    Article  PubMed  CAS  Google Scholar 

  35. Leibowitz SE. Neurochemical-neuroendocrine systems in the rat brain controlling macronutrient intake and metabolism. Trends Neurosci 1992; 15:491–497.

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz GJ, McHugh PR, Moran TH. Integration ofvagal afferent responses to gastric loads and cholecystokinin in rats. AmJ Physiol 1991;261:R64-R69.

    CAS  Google Scholar 

  37. Willing AE, Berthoud HR. Gastric distention-induced c-fos expression in catecholaminergic neurons of rat dorsal vagal complex. Am J Physiol 1997;272:R59-R67.

    PubMed  CAS  Google Scholar 

  38. Emond MH, Weingarten HP. Fos-like immunoreactivity in vagal and hypoglossal nuclei in different feeding states: A quantatitive study. Physiol Behav. 1995;58:459–465.

    Article  PubMed  CAS  Google Scholar 

  39. Asakawa A, Inui A, Veno N, Makino S, Fujino MA, Kasuga M. Urocortin reduces food intake and gastric emptying in lean and ob/ob obese mice. Gastroenterology 1999;116:1287–1292.

    Article  PubMed  CAS  Google Scholar 

  40. Wattwil M. Postoperative pain relief and gastointestinal motility. Acta Chir Scand Suppl 1989;550:140–145.

    PubMed  CAS  Google Scholar 

  41. Clevers GJ, Smout AJ, van der Schee EJ, Akkermans LM. Myo-electrical and motor activity of the stomach in the first days after abdominal surgery: Evaluation by electrogastrography and impedance gastrography. J Gastroenterol Hepatol 1991;6:253–259.

    PubMed  CAS  Google Scholar 

  42. Welch IM, Saunders K, Read NW. Effect of ileal and intravenous infusions of fat emulsions on feeding and satiety in human volunteers. Gastroenterology 1985;89:1293–1297.

    PubMed  CAS  Google Scholar 

  43. Greenberg D, Lewis DR. Total but not selective hepatic vagotomy attenuates fat-induced satiety. In Proceedings of the Eleventh International Conference on the Physiology of Food and Fluid Intake. New York: Oxford University Press, 1993.

    Google Scholar 

  44. Chavez M, Kelly L, York DA, Berthoud HR. Chemical lesion of visceral afferents causes transient overconsumption of unfamiliar high-fat diets in rats. Am J Physiol 1997;272:R1657-R1663.

    PubMed  CAS  Google Scholar 

  45. Spiller RC, Trotman IF, Higgins BE, Ghatei MA, Grimble GK, Lee YC, Bloom SR, Misiewicz JJ, Silk DB. The ilealbrake inhibition of jejunal motility after ileal fat perfusion in man. Gut 1984;25:365–374.

    PubMed  CAS  Google Scholar 

  46. Lin HC, Zhao XT, Wang L. Intestinal transit is more potently inhibited by fat in the distal (ileal brake) than in the proximal (jejunal brake) gut. Dig Dis Sci 1997;42:19–25.

    Article  PubMed  CAS  Google Scholar 

  47. Reidelberger ED, Kalogeris TJ, Leung PMB, Mandel VE. Postgastric satiety in the sham feeding rat. Am J Physiol 1983;244:R872-R881.

    PubMed  CAS  Google Scholar 

  48. Greenberg D, Smith GP, Gibbs J. Intraduodenal infusion of fats elicit satiety in sham-feeding rat. Am J Physiol 1990; 259:R110-R118.

    PubMed  CAS  Google Scholar 

  49. Lin HC, Doty JE, Reedy TJ, Meyer JH. Inhibition of gastric emptying by glucose depends on length of intestine exposed to nutrient. AmJ Physiol 1989;256:G404-G411.

    CAS  Google Scholar 

  50. Lin HC, Doty JE, Reedy TJ, Meyer JH. Inhibition of gastric emptying by sodium oleate depends on length of intestine exposed to nutrient. AmJ Physiol 1990;259:G1031–1036.

    CAS  Google Scholar 

  51. Blackburn NA, Johnson IT. The effect of gnat gum on the viscosity of the gastrointestinal contents and on glucose uptake from the perfused jejunum in the rat. BrJ Nutr 1981; 46:239–246.

    Article  CAS  Google Scholar 

  52. Low AG, Rainbird AL, Gurr MI. Animal models for studying the effect of fiber on gastrointestinal fuction. J Plant Food 1982;4:29–32.

    Google Scholar 

  53. Mei N. Intestinal chemosensitivity. Physiol Rev 1985;65:211–237.

    PubMed  CAS  Google Scholar 

  54. Berthoud HR, Kressel M, Raybould HE, Neuhuber WL. Vagal sensors in the rat duodenal mucosa: Distribution and structure as revealed by in vivo DiI-tracting. Anat Embryol 1995; 191:203–212.

    Article  PubMed  CAS  Google Scholar 

  55. Schwartz GJ, Tougas G, Moran TH. Integration ofvagal afferent responses to duodenal loads and exogenous CCK in rats. Peptides 1995;16:707–711.

    Article  PubMed  CAS  Google Scholar 

  56. Schwartz GJ, Moran TH. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci Biobehav Rev 1996;20:47–56.

    Article  PubMed  CAS  Google Scholar 

  57. Sternini C, Wong H, Pham T, De Giorgio R, Miller LJ, Kuntz SM, Reeve JR, Walsh JH, Raybould HE. Expression of cholecystokinin A receptors in neurons innervating the rat stomach and intestine. Gastroenterology 1999;117:1138–1146.

    Article  Google Scholar 

  58. Buchan AM, Polak JM, Solcia E, Capella C, Hudson D, Pearse AG. Electron immunohistochemical evidence for human intestinal I cells as the source of CCK. Gut 1978;19:403–407.

    PubMed  CAS  Google Scholar 

  59. Schultzberg M, Hökfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said S. Distribution of peptide- and catecholamine-containing neurons in the gastrointestinal tract of rat and guinea-pig: Immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine beta-hydroxylase. Neuroscience 1980;5:689–744.

    Article  PubMed  CAS  Google Scholar 

  60. Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding and relationship to gallbladder contraction. J Clin Invest 1985;75:1144–1152.

    PubMed  CAS  Google Scholar 

  61. Walsh JH, Lamers CB, Valenzuela JE. Cholecystokinin-octapeptidelike immunoreactivity in human plasma. Gastroenterology 1982;82:438–444.

    PubMed  CAS  Google Scholar 

  62. Wank SA, Pisegna JR, de Weerth A. Brain and gastrointestinal cholecystokinin receptor family: Structure and fimctional expression. Proc Natl Acad Sci USA 1992;89:8691–8695.

    Article  PubMed  CAS  Google Scholar 

  63. Mantyh CR, Pappas TN, Vigina SR. Localization of cholecystokinin A and cholecystokinin B/gastrin receptors in the canine upper gastrointestinal tract. Gastroenterology 1994; 107:1019–1030.

    PubMed  CAS  Google Scholar 

  64. Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP. C-terminal octapeptide of cholecystoldnin decreases food intake in man. AmJ Clin Nutr 1981;34:154–160.

    CAS  Google Scholar 

  65. West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 1984;246:R776-R787.

    PubMed  CAS  Google Scholar 

  66. Stacher G, Steinringer H, Schmierer C, Schneider C, VVqn-klehner S. Cholecystokinin octapeptide decreases intake of solid food in man. Peptides 1982;3:133–136.

    Article  PubMed  CAS  Google Scholar 

  67. Ballinger A, McLoughlin L, Medback S, Clark M. Cholecystokinin is a satiety hormone in humans at physiological postprandial plasma concentrations. Clin Sci 1995;89:375–381.

    PubMed  CAS  Google Scholar 

  68. Wolkowitz OM, Gertz B, Weingarmer H, Beccaria L, Thompson K, Liddle RA. Hunger in humans induced by MK-329, a specific peripheral-type cholecystokinin receptor antagonist. Biol Psychiatry 1990;28:169–173.

    Article  PubMed  CAS  Google Scholar 

  69. Lieverse RJ, Jansen JB, van der Zwan A, Samson L, Masclee AA, Lamers CB. Effects of a physiological dose of cholecystokinin on food intake and postprandial satiation in man. Regnl Pept 1993;43:83–89.

    Article  CAS  Google Scholar 

  70. Lieverse RJ, Jansen JB, Masclee AA, Lamers CB. Satiety effects of a physiological dose of cholecystokinin in humans. Gut 1995;36:176–179.

    PubMed  CAS  Google Scholar 

  71. French SJ, Murry B, Rumsey RD, Sepple CP, Read NW. Is cholecystoldnin a satiety hormone? Correlations of plasma cholecystokinin with hunger, satiety and gastric emptying in normal volunteers. Appetite 1993;21:95–104.

    Article  PubMed  CAS  Google Scholar 

  72. Greenough A, Cole G, Lewis J, Lockton A, Bhmdell J. Untangling the effects of hunger, anxiety and nausea on energy intake during intravenous cholecystokinin octapeptide (CCK-8) infusion. Physiol Behav 1998;65:303–310.

    Article  PubMed  CAS  Google Scholar 

  73. Schwartz GJ, McHugh PR, Moran TH. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. AmJ Physiol 1993;265:R872-R876.

    CAS  Google Scholar 

  74. Peikin SR. Role ofcholecystokinin in the control of food intake. Gastroenterol Clin North Am 1989; 18:757 -775.

    PubMed  CAS  Google Scholar 

  75. Plata-Salaman CR. Regulation of hunger and satiety in man. Dig Dis 1991;9:253–268.

    Article  PubMed  CAS  Google Scholar 

  76. Reidelberger RD, O’Rourke ME. Potent cholecystokinin antagonist L 364718 stimulates food intake in rats. Am J Physiol 1989;257:R1512-R1518.

    PubMed  CAS  Google Scholar 

  77. Reubi JC, Waser B, Läderach U, Stettler C, Friess H, Halter F, Schmassmann A. Localization of cholecystokinin A and cholecystokinin B-gastrin receptors in the human stomach. Gastroenterology 1997; 112:1197–1205.

    Article  PubMed  CAS  Google Scholar 

  78. Mercer JG, Lawrence CB. Selectivity of cholecystokinin (CCK) receptor antagonists, MK-329 and L-365260, for axonally-transported CCK binding sites on the rat vagus nerve. Neurosci Lett 1992;137:229–231.

    Article  PubMed  CAS  Google Scholar 

  79. Zittel TT, Elm BV, Teichman RK, Becker HD, Raybould HE. Cholecystokinin inhibits food intake at a peripheral extra gastric site. Ann N Y Acad Sci 1994;713:431–434.

    Article  PubMed  CAS  Google Scholar 

  80. Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 1983;302:716–718.

    Article  PubMed  CAS  Google Scholar 

  81. Holst JJ. Enteroglucagon. Ann Rev Physiol 1997;59:257–271.

    Article  CAS  Google Scholar 

  82. Qrskov C. Glucagon-like peptide-1, a new hormone of the enteroinsular axis. Diabetologia 1992;35:701–711.

    Google Scholar 

  83. Hartmann B, Johnsen AH, Orskov C, Adelhorst K, Thim L, Hoist JJ. Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 2000;21:73–80.

    Article  PubMed  CAS  Google Scholar 

  84. Lankat-Buttgereit B, Grke R, Fehmann H-C, Richter G, Grke B. Molecular cloning of cDNA for the GLP-1 receptor expressed in rat lung. Exp Clin Endocrinol 1994;102:341–347.

    PubMed  CAS  Google Scholar 

  85. Schmidtler J, Dehne K, Allescher HD, Schusdziarra V, Classen M, Hoist JJ, Polach A, Schepp W. Rat parietal cell receptors for GLP-l-(7-36)amide: Northen blot, cross-linking and radioligand binding. AmJ Physiol 1994;267:G423-G432.

    CAS  Google Scholar 

  86. Valverde I, Merida E, Delgado E, Trapote MA, Villanueva-Penacarrillo ML. Presence and characterization of glucagon- like peptide-1 (7–36)amide receptors in solubilized membranes of rat adipose tissue. Endocrinology 1993; 132:75–79.

    Article  PubMed  CAS  Google Scholar 

  87. Alvarez E, Roncero I, Chowen JA, Thorens B, Balzques E. Expression of the glucagon-like peptide-1 receptor gene in rat brain. J Neurochem 1996;66:920–927.

    Article  PubMed  CAS  Google Scholar 

  88. Kreymann B, Ghatei MA, Burnet P, Williams G, Kanse S, Diani AR, Bloom SR. Characterization of glucagon-like peptide-l-(7-36)amide in the hypothalamus. Brain Res 1989; 502:325–331.

    Article  PubMed  CAS  Google Scholar 

  89. Shimizu I, Hirota M, Ohboshi C, Shima K. Identification and localization of glucagon-like peptide-1 and its receptor in rat brain. Endocrinology 1987; 121:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  90. Kanse SM, Kreymann B, Ghatei MA, Bloom SR. Identification and characterization of glucagon-like peptide-17-36 amide-binding sites in the rat brain and lung. FEBS Lett 1988;241:209–212.

    Article  PubMed  CAS  Google Scholar 

  91. Grke R, Larsen PJ, Mikkelsen JD, Sheikh SE. Identification of specific binding sites for glucagon-like peptide-1 on the posterior lobe of the rat pituitary. Neuroendocrinol 1995; 62:130–134.

    Google Scholar 

  92. Grke R, Larsen PJ, Mikkelsen JD, Sheikh SE. Distribution of GLP-1 binding sites in the rat brain: Evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 1995;7:2294–2300.

    Article  Google Scholar 

  93. Johnson AK, Gross PM. Sensory circumventricular organs and brain homeostatic pathways. FASEB J 1993;7:683–686.

    Google Scholar 

  94. Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993;38:665–673.

    Article  PubMed  CAS  Google Scholar 

  95. Näislund E, Bogefors J, Skogar S, Grybiick P, Jacobsson H, Hoist JJ, Hellstrrm PM. Glucagon-like peptide-1 slows solid gastric emptying with inhibition of insulin, C-peptide, glucagon and peptide YY release in humans. Am J Physiol 1999;277:R910-R916.

    Google Scholar 

  96. Wettergren A, Wojdemann M, Meisner S, Stadil F, Holst JJ. The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7-36-amide on gastric acid secretion in humans depends on an intact vagal innervation. Gut 1997;40:597–601.

    PubMed  CAS  Google Scholar 

  97. Imeryiiz N, Yegen BC, Bozkurt A, Coskam T, Villanueva-Pe-nacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. AmJ Physiol 1997;273:G920-G927.

    Google Scholar 

  98. Wettergren A, Wojdemann M, Holst JJ. Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. AmJ Physiol 1998;275:G984-G992.

    CAS  Google Scholar 

  99. Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R, Schmeigel WH. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997;273:E981-E988.

    PubMed  CAS  Google Scholar 

  100. McMahon LR, Wellman PJ. PVN infusion of GLP-l-(7-36)amide suppresses feeding but does not induce aversion or alter locomotion in rats. Am J Physiol 1998;274:1223–1229.

    Google Scholar 

  101. Tang-Christensen M, Larsen PJ, Göke R, Flink-Jensen A, Jessop DS, Moiler M, Sheikh SP. Central administration of GLP-l-(7-36) amide inhibits food and water intake in rats. AmJ Physiol 1996;271:R848-R856.

    CAS  Google Scholar 

  102. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;379:69–72.

    Article  PubMed  CAS  Google Scholar 

  103. Bloom SR. Glucagon-like peptide-1 and satiety. Nature 1997;385:214.

    Article  CAS  Google Scholar 

  104. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide-1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998;101:515–520.

    Article  PubMed  CAS  Google Scholar 

  105. Gutzwiller JP, Grke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, Winterhalder R, Cohen D, Beglinger C. Glucagon-like peptide-1: A potent regulator of food intake in humans. Gut 1999;44:81–86.

    Article  PubMed  CAS  Google Scholar 

  106. Flint A, Raben A, Rehfeld JF, Holst JJ, Astrup A. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int J Obes Relat Metab Disord 2000;24:288–298.

    Article  PubMed  CAS  Google Scholar 

  107. Gutzwiller JP, Drewe J, Grke B, Schmidt H, Rohrer B, Lareida J, Beglinger C. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. AmJ Physiol 1999;276:R1541-RI544.

    CAS  Google Scholar 

  108. Toft-Nielsen M-B, Madsbad S, Holst JJ. Continuous subcutaneous infusion of glucagon-like peptide-1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 1999;22:1137–1143.

    Article  PubMed  CAS  Google Scholar 

  109. Näislund E, Gutniak M, Skogar S, R6ssner S, Hellstrrm PM. Glucagon-like peptide-1 (GLP-1) increases the period of postprandial satiety and slows gastric emptying in obese humans. AmJ Clin Nutr 1998;68:525–530.

    Google Scholar 

  110. Näslund E, Barkeling B, King N, Gutuiak M, Blundell JE, Hoist JJ, Rrssner S, Hellstr6m PM. Energy intake and appetite are suppressed by glucagon-like peptide-I in obese men. IntJ Obes Relat Metab Disord 1999;23:304–311.

    Article  Google Scholar 

  111. Long SJ, Sutton JA, Amaee WB, Giovanoudi A, Spyrou NM, Rogers PJ, Morgan LM. No effect of glucagon-like peptide-1 on short-term satiety and energy intake in man. BrJ Nutr 1999;8:273–279.

    Google Scholar 

  112. Ranganath LR, Beety JM, Morgan LM, Wright JW, How-land R, Marks V. Attenuated GLP-1 secretion in obesity: Cause or consequence. Gut 1996;38:916–919.

    PubMed  CAS  Google Scholar 

  113. Näslund E, Grybäick P, Backrnan L, Jacobsson H, Hoist JJ, Theodorsson E, Hellstrtm PM. Small bowel gut hormones: Correlation to fasting antroduodenal motility and gastric emptying. Dig Dis Sci 1998;43:945–952.

    Article  PubMed  Google Scholar 

  114. Ranganath L, Norris F, Morgan L, Wright J, Marks V. Inhibition of carbohydrate-mediated glucagon-like peptide-1 (7-36)amide secretion by circulating non-esterified fatty acids. Clin Sci 1999;96:335–342.

    Article  PubMed  CAS  Google Scholar 

  115. C1ément K, Dina C, Basdevant A, Chastang N, Pelloux V, Lahlou N, Berlan M, Langin D, Guy-Grand B, Froguel P. A sib-pair analysis study of 15 candidate genes in French families with morbid obesity. Diabetes 1999;48:398–402.

    Article  Google Scholar 

  116. Tsai CH, Hill M, Drucker DJ. Biological determinants ofintestinotrophic properties of GLP-2. Am J Physiol 1997;272:G662-G668.

    PubMed  CAS  Google Scholar 

  117. Lovshin J, Drucker DJ. New frontiers in the biology of GLP-2. Regul Pept 2000;90:27–32.

    Article  PubMed  CAS  Google Scholar 

  118. Wojdemann M, Wettergren A, Hartmann B, Hoist JJ. Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol 1998;33:828 -832.

    Article  PubMed  CAS  Google Scholar 

  119. Wojdemann M, Wettergren A, Hartmann B, Hilsted L, Holst JJ. Inhibition of sham feeding-stimulated human gastric acid secretion by glucagon-like peptide-2. J Clin Endocrinol Metab 1999;84:2513–2517.

    Article  PubMed  CAS  Google Scholar 

  120. Matson CA, Ritter RC. Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight. Am J Physiol 1999;276:R1038-R1045.

    PubMed  CAS  Google Scholar 

  121. Emond M, Schwartz GJ, Ladenheim EE, Moran TH. Central leptin modulates behavioral and neural responsivity to CCK. AmJ Physiol 1999;276:R1545-R1549.

    CAS  Google Scholar 

  122. Broberger C, Holmberg K, Kuhar MJ, Hökfelt T. Cocaine- and amphetamine-regulated transcript in the rat vagus nerve. A putative mediator of cholecystokinin-induced satiety. Proc Natl Acad Sci USA 1999;96:13506–13511.

    Article  PubMed  CAS  Google Scholar 

  123. Goldstone AP, MercerJG, Gunn I, Moar KM, Edwards CM, Rossi M, Howard JK, Rasheed S, Turton MD, Small C, Heath MM, O’Shea D, Steere J, Meeran K, Ghatei MA, Hoggard N, Bloom SR. Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents. FEBS Lett 1997;415:134–138.

    Article  PubMed  CAS  Google Scholar 

  124. Goldstone AP, Morgan I, Mercer JG, Morgan DG, Moar KM, Ghatei MA, Bloom SR. Effect of leptin on hypothalamic GLP-1 peptide and brain-stem pre-proglucagon mRNA. Biochem Biophys Res Commun 2000;269:331–335.

    Article  PubMed  CAS  Google Scholar 

  125. Nygren J, Soop M, Thorell A, Sree Nair K, Ljungqvist O. Preoperative oral carbohydrates and postoperative insulin resistance. Clin Nutr 1999;18:117–120.

    Article  PubMed  CAS  Google Scholar 

  126. Kehlet H, Morgensen T. Hospital stay of 2 days after open sigmoidectomy with a multimodal rehabilitation programme. BrJ Surg 1999;86:227–230.

    Article  CAS  Google Scholar 

  127. Karagiannakis AJ, Makri GG, Matziska A, Karousos D, Karatzas G. Systemic stress response after laparoscopic or open cholecystectomy: A randomized trial. Br J Surg 1997; 84:467–471.

    Article  Google Scholar 

  128. Lawaetz O, Blackburn AM, Bloom SR, Aritas Y, Ralphs DN. Gut hormone profile and gastric emptying in the dumping syndrome. A hypothesis concerning the pathogenesis. Scand J Gastroenterol 1983;18:73–80.

    Article  PubMed  CAS  Google Scholar 

  129. Kral JG. Effects of truncal vagotomy on body weight and hyperinsulinemia. Am J Clin Nutr 1980;33:416–419.

    PubMed  CAS  Google Scholar 

  130. Görtz L, Björkman A-C, Andersson H, Kral JG. Truncal vagotomy reduces food and liquid intake in man. Physiol Behay 1990;48:779–781.

    Article  Google Scholar 

  131. Jeppesen PB, Hartmann B, Thulesen J, Hansen BS, Holst JJ, Poulsen SS, Mortensen PB. Elevated plasma glucagon-like peptide 1 and 2 concentrations in ileum resected short bowel patients with preserved colon. Gut 2000;47:370–376.

    Article  PubMed  CAS  Google Scholar 

  132. Cannizzo F, Kral JG. Obesity surgery: A model of programmed undernutrition. Curr Opin Clin Nutr Metab Care 1998;1:363–368.

    Article  PubMed  Google Scholar 

  133. Wattchow DA, Furness JB, Costa M, O’Brien PE, Peacock M. Distributions of neuropeptides in the human esophagus. Gastroenterology 1987;93:1363–1371.

    PubMed  CAS  Google Scholar 

  134. Aziz Q, Andersson JL, Valind S, Sundin A, Hamdy S, Jones AK, Foster ER, Langstrom B, Thompson DG. Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology 1997; 113:50–59.

    Article  PubMed  CAS  Google Scholar 

  135. Kral JG. Vagotomy as a treatment for severe obesity. Lancet 1978;I:307–308.

    Article  Google Scholar 

  136. Kral JG, Kissileff HR. Surgical approaches to the treatment of obesity. Ann Behav Med 1987;9:15–19.

    Article  Google Scholar 

  137. Kral JG, Gtrtz L, Hermanson G, Wallin GS. Gastroplasty for obesity: Long-term weight loss improved by vagotomy. World J Surg 1993;17:75–79.

    Article  PubMed  CAS  Google Scholar 

  138. Kellum JM, Kuemmerle JF, O’Dorisio TM, Rayford P, Mar-tin D, Engle K, Wolf L, Sugerman HJ. Gastrointestinal homone responses to meals before and after gastric bypass and vertical banded gastroplasty. Ann Surg 1990;211:763–770.

    Article  PubMed  CAS  Google Scholar 

  139. Meryn S, Stein D, Straus EW. Fasting- and meal-stimulated peptide hormone concentrations before and after gastric surgery for morbid obesity. Metabolism 1986;35:798–802.

    Article  PubMed  CAS  Google Scholar 

  140. Meryn S, Stein D, Straus EW. Pancreatic polypeptide, pancreatic glucagon and enteroglucagon in morbid obesity and following gastric bypass operation, Int J Obes 1986;10:37–42.

    PubMed  CAS  Google Scholar 

  141. Sirinek KR, O’Dorisio TM, Hill D, Mc Fee AS. Hyperinsulinism, glucose-dependent insulinotropic polypeptide and the enteroinsulinar axis in morbidly obese patients before and after gastric bypass. Surgery 1986;100:781–787.

    PubMed  CAS  Google Scholar 

  142. Kral JG. Malabsorptive procedures in surgical treatment of morbid obesity. Gastroenterol Clin North Am 1987;16:293–305.

    PubMed  CAS  Google Scholar 

  143. Näislund E, Grybäick P, Backman L, Jacobsson H, Holst JJ, Theodorsson E, Hellstrtm PM. Small bowel gut hormones: Correlation to fasting antroduodenal motility and gastric emptying. Dig Dis Sci 1998;43:945–953.

    Article  Google Scholar 

  144. Näislund E, Grybäick P, Hellstrtm PM, Jacobsson H, Holst JJ, Theodorsson E, Backrnan L. Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. IntJ Obes Relat Metab Disord 1997;48:387–392.

    Article  Google Scholar 

  145. Scopinaro N, Gianetta E, Adami GF, Friedman D, Traverso E, Marinari GM, Cuneo S, Vitale B, Ballari F, Colombri M, Baschieri G, Bachi V. Biliopancreatic diversion for obesity at eighteen years. Surgery 1996;119:261–268.

    Article  PubMed  CAS  Google Scholar 

  146. Marceau P, Hould FS, Simard S, Lebel S, Bourgue RA, Potvin M, Biron S. Biliopancreatic diversion with duodenal switch. World J Surg 1998;22:947–954.

    Article  PubMed  CAS  Google Scholar 

  147. Sarson DL, Scopinaro N, Bloom SR. Gut hormone changes after jejunoileal (liB) or biliopancreatic (BPB) bypass surgery for morbid obesity. IntJ Obes 1981;5:471–480.

    CAS  Google Scholar 

  148. Wilson P, Welch NT, Hinder RA, Anselmino M, Herrington MK, DeMeester TR, Adrian TE. Abnormal plasma gut hormones in pathologic duodenogastric reflux and their response to surgery. AmJ Surg 1993;165:169–176.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Swedish Medical Research Council and the AMF-sjukföräkrings Jubilée Foundation for Research in National Diseases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Näslund, E., Hellströrn, P.M. & Kral, J.G. The gut and food intake: An update for surgeons. J Gastrointest Surg 5, 556–567 (2001). https://doi.org/10.1016/S1091-255X(01)80095-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1091-255X(01)80095-0

Key words

Navigation