Skip to main content
Log in

Overexpression of caspase-1 in pancreatic disorders: Implications for a function besides apoptosis

  • Published:
Journal of Gastrointestinal Surgery

Abstract

The caspases are known to play a crucial role in the triggering and execution of apoptosis in a variety of cell types. We assessed the expression of caspase-1 in 42 pancreatic cancer tissue samples, 38 chronic pancreatitis specimens, and nine normal pancreatic tissues by immunohistochemistry and Western blot analysis. We found a clear overexpression of caspase-1 in both disorders, but differences in the expression patterns in distinct morphologic compartments. Pancreatic cancer tissue showed a clear cytoplasmatic overexpression of caspase-1 in tumor cells in 71% of the tumors, whereas normal pancreatic tissue showed only occasional immunoreactivity. In chronic pancreatitis an overexpression of caspase-1 was found in atrophic acinar cells (89%), hyperplastic ducts (87%), and dedifferentiating acinar cells (84%). Although in atrophic cells a clear nuclear expression was found, hyperplastic ducts and dedifferentiating acinar cells showed clear cytoplasmic expression. Western blot analysis revealed a marked expression of the 45 kDa precursor of caspase-1 in pancreatic cancer and chronic pancreatitis (80% and 86%, respectively). Clear bands at 30 kDa, suggested to represent the pl0-p20 heterodimer of active caspase-1, were found in 60% of the cancer tissue and 14% of the pancreatitis tissue specimens. Since we found a highly significant correlation between cytoplasm overexpression of caspase-1 in pancreatic cancer and overexpression of the known prognostic factors cyclin D1, epidermal growth factor, and epidermal growth factor receptor, it is plausible that caspase-1 has a yet unknown function in proliferative processes in addition to its well-known role in the apoptotic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kostura MJ, Tbcci MJ, Limjuco G, Chin J, Cameron P, Hill-mann AG, Chat-uain N, Schmidt JA. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci USA 1989;86:5227–5231.

    Article  PubMed  CAS  Google Scholar 

  2. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weid-ner JR, Aunins J, et al.. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992;356:768–774.

    Article  PubMed  CAS  Google Scholar 

  3. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene ted-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75:641–652.

    Article  PubMed  CAS  Google Scholar 

  4. Enari M, Hug H, Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 1995;375:78–81.

    Article  PubMed  CAS  Google Scholar 

  5. Zhu H, Feamhead HO, Cohen GM. An ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP.1 cells. FEBS Lett 1995;374:303–308.

    Article  PubMed  CAS  Google Scholar 

  6. Jacobsen MD, Weil M, Raff MC. Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death. J Cell Biol 1996;133:1041–1051.

    Article  PubMed  CAS  Google Scholar 

  7. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of tbe C. elegans cell death gene ted-3. Cell 1993;75:653–660.

    Article  PubMed  CAS  Google Scholar 

  8. Gadiardini V, Fernandez PA, Lee RK, Drexler HC, Rotello RJ, Fishman MC, Yuan J. Prevention of vertebrate neuronal death by the crmA gene. Science 1994;263:826–828.

    Article  Google Scholar 

  9. Kondo S, Barna BP, Morimura T, Takeuchi J, Yuan J, Akbasak A, Barnett GH. Interleukin-1 beta-converting enzyme mediates cisplatin-induced apoptosis in malignant glioma cells. Cancer Res 1995;55:6166–6171.

    PubMed  CAS  Google Scholar 

  10. Chen Z, Naito M, Mashima T, Tsuruo T. Activation of actincleavable interleukin 1 beta-converting enzyme (ICE) family protease CPP-32 during chemotherapeutic agent-induced apoptosis in ovarian carcinoma cells. Cancer Res 1996;56:5224–5229.

    PubMed  CAS  Google Scholar 

  11. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J, et al.. Mice deficient in IL-l beta-converting enzyme are defective in production of mature IL-l beta and resistant to endotoxic shock. Cell 1995;80:401–411.

    Article  PubMed  CAS  Google Scholar 

  12. Duan H, Chinnaiyan AM, Hudson PL, Wing JP, He WW, Dixit VM. ICE-LAP3, a novel mammalian homologue of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas- and tumor necrosis factor-induced apoptosis. J Biol Chem 1996;271:1621–1625.

    Article  PubMed  CAS  Google Scholar 

  13. Faucheu C, Diu A, Chan AW, Blanchet AM, Miossec C, Herve F, Collard Dutilletd V, Gu Y, Aldape RA, Lippke JA, et al.. A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells. EmboJ 1995;14:1914–1922.

    CAS  Google Scholar 

  14. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA. Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ted-3 and the mammalian IL-l beta-converting enzyme. Genes Dev 1994;8:1613–1626.

    Article  PubMed  CAS  Google Scholar 

  15. Gansauge S, Gansauge F, Ramadani M, Stobbe H, Rau B, Harada N, Beger HG. Overexpression of cyclin D1 in human pancreatic carcinoma is associated with poor prognosis. Cancer Res 1997;57:1634–1637.

    PubMed  CAS  Google Scholar 

  16. Gansauge F, Gansauge S, Schmidt E, Muller J, Beger HG. Prognostic significance of molecular alterations in human pancreatic carcinoma—an immunohistological study. Langenbecks Arch Surg 1998;383:152–155.

    PubMed  CAS  Google Scholar 

  17. Miossec C, Decoen MC, Durand L, Fassy F, Diu Hercend A. Use of monoclonal antibodies to study interleukin-1 beta-converting enzyme expression: Only precursor forms are detected in interleukin-1 beta-secreting cells. Eur J Immunol 1996;26:1032–1042.

    Article  PubMed  CAS  Google Scholar 

  18. Gu Y, Wu J, Faucheu C, Lalanne JL, Diu A, Livingston DJ, Su MS. Interleukin-1 beta converting enzyme requires oligomerization for activity of processed forms in vivo. Embo J 1995;14:1923–1931.

    PubMed  CAS  Google Scholar 

  19. Casciola Rosen LA, Anhalt GJ, Rosen A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 1995;182:1625–1634.

    Article  Google Scholar 

  20. Toyoda H, Nakamura T, Shinoda M, Suzuki T, Hatooka S, Kobayashi S, Ohashi K, Seto M, Shiku H, Nakamura S. Cyclin Dl expression is useful as a prognostic indicator for advanced esophageal carcinomas, but not for superficial tumors. Dig Dis Sci 2000;45:864–869.

    Article  PubMed  CAS  Google Scholar 

  21. Sallinen SL, Sallinen PK, KononenJT, Syrjakoski KM, Nup-ponen NN, Rantala IS, Helen PT, Helin HJ, Haapasalo HK. Cyclin Dl expression in astrocytomas is associated with cell proliferation activity and patient prognosis. J Pathol 1999; 188:289–293.

    Article  PubMed  CAS  Google Scholar 

  22. Keum JS, Kong G, Yang SC, Shin DH, Park SS, Lee JH, Lee JD. Cyclin Dl overexpression is an indicator of poor prognosis in resectable non-small cell lung cancer. Br J Cancer 1999; 81:127–132.

    Article  PubMed  CAS  Google Scholar 

  23. Korc M, Chandrasekar B, Shah GN. Differential binding and biological activities of epidermal growth factor and transforming growth factor alpha in a human pancreatic cancer cell line. Cancer Res 1991;51:6243–6249.

    PubMed  CAS  Google Scholar 

  24. Chin YE, Kitagawa M, Kuida K, Flavell RA, Fu KY. Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol Cell Biol 1997;17:5328–5337.

    PubMed  CAS  Google Scholar 

  25. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, Korc M. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 1993;13:565–569.

    PubMed  CAS  Google Scholar 

  26. Thumshirn M, Gyr K. Classification of pancreatitis—A critical review and outlook. Dig Surg 1994; 11:193–197.

    Article  Google Scholar 

  27. Kornmamr M, Ishiwata T, Arber N, Beger HG, Korc M. Increased cyclin D1 expression in chronic pancreatitis. Pancreas 1998;17:158–162.

    Article  Google Scholar 

  28. Korc M, Friess H, Yamanaka Y, Kobrin MS, Buchler M, Beger HG. Chronic pancreatitis is associated with increased concentrations of epidermal growth factor receptor, transforming growth factor alpha, and phospholipase C gamma. Gut 1994;35:1468–1473.

    Article  PubMed  CAS  Google Scholar 

  29. Vinter Jensen L, Juhl CO, Teglbjaerg PS, Poulsen SS, Dajani EZ, Nexo E. Systemic treatment with epidermal growth factor in pigs induces ductal proliferations in the pancreas. Gastroenterology 1997;113:1367–1374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Krebshilfe Grant 10-1276-Gal (Drs. F. Gansauge and S. Gansauge).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadani, M., Gansauge, F., Schlosser, S. et al. Overexpression of caspase-1 in pancreatic disorders: Implications for a function besides apoptosis. J Gastrointest Surg 5, 352–358 (2001). https://doi.org/10.1016/S1091-255X(01)80061-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1091-255X(01)80061-5

Key words

Navigation