Skip to main content
Log in

Specific reversible stimulation of system y+ l-arginine transport activity in human intestinal cells

  • Published:
Journal of Gastrointestinal Surgery

Abstract

l-Arginine, which is intimately involved in cellular immune functions and nitric oxide biology, is transported by intestinal cells largely via transport System y+. The gut epithelium is exposed to various luminal amino acids at any given time, and therefore the purpose of this study was to study the regulation of luminal arginine transport by other amino acids. System y+l-arginine transport activity was measured in Caco-2 monolayers exposed to various amino acids. l-arginine and/or other System y+ substrates specifically upregulated System y+ transport activity twofold after 1 hour, with a response noted as early as 5 minutes. Non-System y+ substrates did not affect l-arginine absorption. Kinetic analysis indicated that l-arginine exposure increased both System y+ Km and Vmax. Neither cycloheximide nor actinomycin affected this stimulation, indicating that the regulation did not involve transcription or translation. The System y+ substrate activation effect was reversible. l-arginine transport activity returned to baseline within 3 hours when cells were reincubated in amino acid-free media. These data indicate that System y+ arginine transport activity is rapidly and reversibly activated by System y+ substrates via a mechanism consistent with transmembrane stimulation. These findings identify a mechanism by which luminal nutrients regulate arginine uptake by the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbul A. Arginine and immune function. Nutrition 1990;6:53–58.

    PubMed  CAS  Google Scholar 

  2. Visek WJ. Arginine needs, physiological state and usual diets. J Nutr 1986;116:36–46.

    PubMed  CAS  Google Scholar 

  3. Jeevanandam M, Begay CK, Holaday NJ, Petersen SR. Nutritional and metabolic effects and significance of mild orotic aciduria during dietary supplementation with arginine or its organic salts after trauma injury in rats. Metabolism 1997;46:785–792.

    Article  PubMed  CAS  Google Scholar 

  4. Blachier F, Darcy-Vrillon B, Sener A, Duee P, Malaisse WJ. Arginine metabolism in rat enterocytes. Biochim Biophys Acta 1991;1092:304–310.

    Article  PubMed  CAS  Google Scholar 

  5. Daly JM, Lieberman MD, Goldfine J, Shou J, Weintraub F, Rosato EF, Lavin P. Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: Immunologic, metabolic, and clinical outcome. Surgery 1992;112:56–67.

    PubMed  CAS  Google Scholar 

  6. Daly JM, Weintraub FN, Shou J, Rosato EF, Lucia M. Enteral nutrition during multimodality therapy in upper gastrointestinal cancer patients. Ann Surg 1995;221:327–338.

    Article  PubMed  CAS  Google Scholar 

  7. Gianotti L, Braga M, Vignali A, Balzano G, Zerbi A, Bisa-gni P, Di Carlo V. Effect of route of delivery and formulation of postoperative nutritional support in patients undergoing major operations for malignant neoplasms. Arch Surg 1997;132:1222–1230.

    PubMed  CAS  Google Scholar 

  8. Braga M, Gianotti L, Radaelli G, Vignali A, Mari G, Gen-tilini O, Di Carlo V. Perioperative immunonutrition in patients undergoing cancer surgery: Results of a randomized double-blind phase 3 trial. Arch Surg 1999;134:428–433.

    Article  PubMed  CAS  Google Scholar 

  9. Senkal M, Mumme A, Eickhoff U, Geier B, Spath G, Wulfert D, Joosten U, Frei A, Kemen M. Early postoperative enteral immunonutrition: Clinical outcome and cost-comparison analysis in surgical patients. Crit Care Med 1997;25:1489–1496.

    Article  PubMed  CAS  Google Scholar 

  10. Senkal M, Zumtobel V, Bauer KH, Marpe B, Wolfram G, Frei A, Eickhoff U, Kemen M. Outcome and cost-effectiveness of perioperative enteral immunonutrition in patients undergoing elective upper gastrointestinal tract surgery: A prospective randomized study. Arch Surg 1999;134:1309–1316.

    Article  PubMed  CAS  Google Scholar 

  11. Moore FA, Moore EE, Kudsk KA, Brown RO, Bower RH, Koruda MJ, Baker CC, Barbul A. Clinical benefits of an immune-enhancing diet for early postinjury enteral feeding. J Trauma 1995; 37:607–615.

    Article  Google Scholar 

  12. Kudsk KA, Minard G, Croce MA, Brown RO, Lowrey TS, Pritchard FE, Dickerson RN, Fabian TC. A randomized trial of isonitrogenous enteral diets after severe trauma: An immune-enhancing diet reduces septic complications. Ann Surg 1996;224:531–541.

    Article  PubMed  CAS  Google Scholar 

  13. Weimann A, Bastian L, Bischoff WE, Grotz M, Hansel M, Lotz J, Trautwein C, Tusch G, Schlitt HJ, Regel G. Influence of arginine, omega-3 fatty acids and nucleotide-supplemented enteral support on systemic inflammatory response syndrome and multiple organ failure in patients after severe trauma. Nutrition 1998;14:165–172.

    Article  PubMed  CAS  Google Scholar 

  14. Bower RH, Cerra FB, Bershadsky B, Licari JJ, Hoyt DB, Jensen GL, Van Buren CT, Rothkopf MM, Daly JM, Adelsberg BR. Early enteral administration of a formula (Impact®) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: Results of a multicenter, prospective, randomized, clinical trial. Crit Care Med 1995;23:436–449.

    Article  PubMed  CAS  Google Scholar 

  15. Galban C, Montejo JC, Mesejo A, Marco P, Celaya S, Sanchez-Segura JM, Farre M, Bryg DJ. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 2000; 28:643–648.

    Article  PubMed  CAS  Google Scholar 

  16. Kilberg MS, Stevens BR, Novak DA. Recent advances in mammalian amino acid transport. Annu Rev Nutr 1993;13:137–165.

    Article  PubMed  CAS  Google Scholar 

  17. Stevens BR. Vertebrate intestine apical membrane mechanisms of organic nutrient transport. Am J Physiol. 1992; 263:458–463.

    Google Scholar 

  18. Ferraris RP, Diamond JM. Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol 1989;51:125–141.

    Article  PubMed  CAS  Google Scholar 

  19. Ferraris RP, Kwan WW, Diamond J. Regulatory signals for intestinal amino acid transporters and peptidases. Am J Physiol 1988;255:151–157.

    Google Scholar 

  20. Ferraris RP, Diamond J, Kwan WW. Dietary regulation of intestinal transport of the dipeptide carnosine. Am J Physiol 1988;25:143–150.

    Google Scholar 

  21. Diamond JM, Karasov WH. Adaptive regulation of intestinal nutrient transporters. Proc Natl Acad Sci USA 1987;84:2242–2245.

    Article  PubMed  CAS  Google Scholar 

  22. Laganiere S, Maestracci D, Berteloot A. Adaptation of intestinal sugar and amino acid transport to gastric hyperalimentation. Clin Invest Med 1986;9:176–185.

    PubMed  CAS  Google Scholar 

  23. Buddington RK, ChenJW, Diamond JM. Dietary regulation of intestinal brush-border sugar and amino acid transport in carnivores. AmJ Physiol 1991;261:793–801.

    Google Scholar 

  24. Stein ED, Chang SD, Diamond JM. Comparison of different dietary amino acids as inducers of intestinal amino acid transport. AmJ Physiol 1987; 52:626–635.

    Google Scholar 

  25. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989;96:736–749.

    PubMed  CAS  Google Scholar 

  26. Mohrmann I, Mohrmann M, Biber J, Murer H. Sodium-dependent transport of Pi by an established intestinal epithelial cell line (Caco-2). AmJ Physiol 1986;250:323–330.

    Google Scholar 

  27. Blais A, Bissonnette P, Berteloot A. Common charactristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. J Membr Biol 1987;99:113–125.

    Article  PubMed  CAS  Google Scholar 

  28. Brandsch M, Miyamoto Y, Ganapathy Y, Leibach FH. Expression and protein kinase C-dependent regulation of peptide/H+ co-transport system in the Caco-2 human colon carcinoma cell line. BiochemJ 1994;299:253–260.

    CAS  Google Scholar 

  29. Pan M, Malandro M, Stevens BR. Regulation of system y+ arginine transport capacity in differentiating human intestinal Caco-2 cells. Am J Physiol 1995;268(Part 1): 578–585.

    Google Scholar 

  30. Barbul A. Arginine: Biochemistry, physiology, and therapeutic implication. JPEN 1986;10:227–238.

    CAS  Google Scholar 

  31. Morris JG, Rogers QR. Ammonia intoxication in the nearadult cat as a result of dietary deficiency of arginine. Science 1978;199:431–432.

    Article  PubMed  CAS  Google Scholar 

  32. Morris JG, Rogers QR. Arginine: An essential amino acids for the cat. J. Nutr 1978;108:1944–1953.

    CAS  Google Scholar 

  33. Andria G, Sebastio G, Sartorio R. Arginine supplementation in lysinuric protein intolerance. J Inherited Metab Dis 1981;5:61–62.

    Article  Google Scholar 

  34. Kim JW, Closs EL, Albritton LM, Cunningham JM. Transport of cationic amino acids by the ecotropic retrovirus receptor. Nature 1991;352:725–728.

    Article  PubMed  CAS  Google Scholar 

  35. Wang H, Kavanaugh M, North R, Kabat D. Cell-surface receptor for ecotropic murine retroviruses is a basic amino acid transporter. Nature 1991;352:729–731.

    Article  PubMed  CAS  Google Scholar 

  36. Reynolds JV, DalyJM, ShouJ, Sigal R, Ziegler MM, Naji A. Immunologic effects of arginine supplementation in tumor-bearing and non-tumor-bearing hosts. Ann Surg 1990;211:202–210.

    Article  PubMed  CAS  Google Scholar 

  37. Lieberman MD, Nishioka K, Redmond HP, Daly JM. Enhancement of interleukin-2 immunotherapy with L-arginine. Ann Surg 1992; 215:157–165.

    Article  PubMed  CAS  Google Scholar 

  38. Gurbuz AT, Kunzelman J, Ratzer EE. Supplemental dietary arginine accelerates intestinal mucosal regeneration and enhances bacterial clearance following radiation enteritis in rats. J Surg Res 1998;74:149–154.

    Article  PubMed  CAS  Google Scholar 

  39. Ersin S, Tuncyurek P, Esassolak M, Alkanat M, Buke C, Yilmaz M, Telefoncu A, Kose T. The prophylactic and theapeutic effects of glutamine- and arginine-enriched diets on radiation-induced enteritis in rats. J Surg Res 2000;89:121–125.

    Article  PubMed  CAS  Google Scholar 

  40. Gianotti, Alexander JW, Pyles T, Fukushima R. Arginine-supplemented diet improve survival in gut-derived sepsis and peritonitis by modulating bacterial clearance. The role of nitric oxide. Ann Surg 1993; 217:644–653.

    Article  PubMed  CAS  Google Scholar 

  41. Adjei AA, Yamauchi K, Nakasone Y, Konishi M, Yamamoto S. Arginine-supplemented diets inhibit endotoxin-induced bacterial translocation in mice. Nutrition 11:371–374.

  42. Gennari R, Alexander JW, Eaves-Pyles T. Effect of different combination of dietary additives on bacterial translocation and survival in gut-derived sepsis. JPEN J Parenter EnteralNutr 1995;19:319–325.

    CAS  Google Scholar 

  43. Saito H, Trocki O, Liang SL. Metabolic and immune effects of supplemental arginine after burn. Arch Surg 1987;122:784–789.

    PubMed  CAS  Google Scholar 

  44. Pan M, Stevens BR. Protein kinase C-dependent regulation of L-arginine transport activity in Caco-2 intestinal cells. Biochim Biophys Acta 1995;1239:27–32.

    Article  PubMed  Google Scholar 

  45. Stevens BR. Amino acid transport in intestine. In Kilberg MS, Häussinger D, eds. Mammalian Amino Acid Transport Mechanisms and Control. New York: Plenum Press, 1992, pp 149–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, M., Souba, W.W., Karinch, A.M. et al. Specific reversible stimulation of system y+ l-arginine transport activity in human intestinal cells. J Gastrointest Surg 6, 379–386 (2002). https://doi.org/10.1016/S1091-255X(01)00047-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1091-255X(01)00047-6

Key words

Navigation