Skip to main content
Log in

Sodium salicylate inhibits proliferation and induces Gl cell cycle arrest in human pancreatic cancer cell lines

  • Published:
Journal of Gastrointestinal Surgery

Abstract

The mutations most common in pancreatic cancer decrease the ability to control Gl to S cell cycle progression and cellular proliferation. In colorectal cancer cells, nonsteroidal anti-inflammatory drugs inhibit proliferation and induce cell cycle arrest. We examined whether sodium salicylate, an aspirin metabolite, could inhibit proliferation in human pancreatic cancer cell lines (BxPC3 and Panc-1). Quiescent cells were treated with medium containing 10% fetal calf serum, with or without salicylate. Cellular proliferation was measured by MTT assay and bromodeoxyuridine incorporation. The fractions of cells in G0/G1, S, and G2/M phases of the cell cycle were quantitated by fluorescence-activated cell sorting. Results were compared between groups by two-tailed t test. Cydin Dl expression was determined by Western blot analysis and prostaglandin E2 expression by enzyme-linked immunosorbent assay. Serum-starved cells failed to proliferate, with most arrested in the Gl phase. Salicylate significantly inhibited serum-induced progression from Gl to S phase, cellular proliferation, and the expression of cyclin Dl. The concentrations at which 50% of serum-induced proliferation was inhibited were 1.2 mmol/L (Panc-1) and 1.7 mmol/L (BxPC3). The annproliferative effect of sodium salicylate was not explained by inhibition of prostaglandin E2 production. This study provides further evidence in a noncolorectal cancer model for the antineoplastic effects of nonsteroidal anti-inflammatory drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker SL, Tong T, Bolden S, Wingo PA. Cancer Statistics, 1997. CA Cancer J Clin 1997;47:5–27.

    PubMed  CAS  Google Scholar 

  2. Yeo CJ, Abrams RA, Grochow LB, Sohn TA, Ord SE, Hruban RH, Zahurak ML, Dooley WC, Coleman J, Sauter PK, et al. Pancreaticoduodenectomy for pancreatic adenocarcinoma: Postoperative adjuvant chemoradiation improves survival. Ann Surg 1997;225:621–36.

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353–364.

    Article  PubMed  CAS  Google Scholar 

  4. Perugini RA, McDade TP, Vittimberga FJ, Callery MP. Molecular and cellular biology of pancreatic cancer. Crit Rev Eukaryot Gene Expr 1998;8:377–393.

    PubMed  CAS  Google Scholar 

  5. Bos JL. p21 ras: An oncoprotein functioning in growth factor- induced signal transduction. Eur J Cancer 1995;31A:1051–1054.

    Article  PubMed  CAS  Google Scholar 

  6. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988;53:549–554.

    Article  PubMed  CAS  Google Scholar 

  7. Lemoine NR, Hughes CM, Barton CM, Poulsom R, Jeffery RE, Kloppel G, Hall PA, Gullick WJ. The epidermal growth factor receptor in human pancreatic cancer. J Pathol 1992; 166:7–12.

    Article  PubMed  CAS  Google Scholar 

  8. Grunewald K, Lyons J, Frohlich A, Feichtinger H, Weger RA, Schwab G, Janssen JWG, Bartram CR. High frequency of Ki- ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 1989;43:1037–1041.

    Article  PubMed  CAS  Google Scholar 

  9. Pronk GJ, Bos JL. The role of p21ras in receptor tyrosine ki- nase signalling. Biochim Biophys Acta 1994;1198:131–147.

    PubMed  Google Scholar 

  10. Redston MS, Caldas C, Seymour AB, Hruban RH, da Costa L, Yeo CJ, Kern SE. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 1994;54:3025–3033.

    PubMed  CAS  Google Scholar 

  11. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817–825.

    Article  PubMed  CAS  Google Scholar 

  12. Xiong Y, Harmon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366:701–704.

    Article  PubMed  CAS  Google Scholar 

  13. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 cdk-interacting protein Cip21 is a potent inhibitor of Gl cydin-dependent kinases. Cell 1993;75:805–816.

    Article  PubMed  CAS  Google Scholar 

  14. Chen Z, Zhang H, Savarese T. Gene deletion chemoselectiv- ity: Codeletion of the genes for pl6 (INK4), methylthio- adenosine phosphorylase, and the alpha- and beta-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy. Cancer Res 1996;56:1083–1090.

    PubMed  CAS  Google Scholar 

  15. Huang L, Goodrow T, Zhang S, Klein-Szanto A, Chang H, Ruggeri B. Deletion and mutation analyses of the pl6/MTS-1 tumor suppressor gene in human ductal pancreatic cancer reveals a higher frequency of abnormalities in tumor-derived cell lines than in primary ductal adenocarcinomas. Cancer Res 1996;56:1137–1141.

    PubMed  CAS  Google Scholar 

  16. Naumann M, Savitskaia N, Eilert C, Schramm A, Kalthoff H, Schmiegel W. Frequent codeletion of pl6/MTSl and pl5/MTS2 and genetic alterations in pl6/MTSl in pancre- atic tumors. Gastroenterology 1996;110:1215–1224.

    Article  PubMed  CAS  Google Scholar 

  17. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993;366:704–707.

    Article  PubMed  CAS  Google Scholar 

  18. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, et al. The Ink4a tumor suppressor gene product, pl9ARF, interacts with MDM2 and neutralizes inhibition of p53. Cell 1998; 92:713–723.

    Article  PubMed  CAS  Google Scholar 

  19. Trujillo MA, Garewal HS, Sampliner RE. Nonsteroidal anti- inflammatory agents in chemoprevention of colorectal cancer. At what cost? Dig Dis Sci 1994;39:2260–2266.

    Article  PubMed  CAS  Google Scholar 

  20. Giardiello FM, Offerhaus GJA, DuBois RN. The role of non- steroidal antiinflammatory drugs in colorectal cancer preven- tion. Eur J Cancer 1995;31A:1071–1075.

    Article  PubMed  CAS  Google Scholar 

  21. Qiao L, Shiff SJ, Rigas B. Sulindac sulfide inhibits the prolif- eration of colon cancer cells: Diminished expression of the pro- liferation markers PCNA and Ki-67. Cancer Lett 1997;115:229–234.

    Article  PubMed  CAS  Google Scholar 

  22. Shiff SJ, Qiao L, Tsai L-L, Rigas B. Sulindac sulfide, an as- pirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocar- cinoma cells. J Clin Invest 1995;96:491–503.

    Article  PubMed  CAS  Google Scholar 

  23. Shiff SJ, Koutsos MI, Qiao L, Rigas B. Nonsteroidal antiin- flammatory drugs inhibit the proliferation of colon adenocar- cinoma cells: Effects on cell cycle and apoptosis. Exp Cell Res 1996;222:179–188.

    Article  PubMed  CAS  Google Scholar 

  24. Ilanif R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L, Shiff SI, Rigas B. Effects of nonsteroidal antiinflam- matory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-dependent pathway. Biochem Pharmacol 1996;52:237–245.

    Article  Google Scholar 

  25. Piazza GA, Rahm AK, Finn TS, Fryer BH, Li H, Stoumen AL, Parmikcu R, Ahnen DJ. Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res 1997;57:2452–2459.

    PubMed  CAS  Google Scholar 

  26. Elder DE, Hague A, Hicks DJ, Paraskeva C. Differential growth inhibition by the aspirin metabolite salicylate in hu- man colorectal tumor cell lines: Enhanced apoptosis in carci- noma and in vitro-transformed adenoma relative to adenoma cell lines. Cancer Res 1996;56:2273–2276.

    PubMed  CAS  Google Scholar 

  27. Higgs GA, Salmon JA, Henderson B, Vane JR. Pharmacoki- netics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc Natl Acad Sci U.S.A. 1987;84:1417–1420.

    Article  PubMed  CAS  Google Scholar 

  28. Barton CM, Staddon SL, Hughes CM, Hall PA, O’Sullivan C, Kloppel G, Theis B, Russel RCG, Neoptolemos J, Williamson RCN, et al.. Abnormalities of the pS3 tumour sup- pressor gene in human pancreatic cancer. Br J Cancer 1991; 64:1076–1082.

    PubMed  CAS  Google Scholar 

  29. Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M. Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int J Cancer 1994;58:185–191.

    Article  PubMed  CAS  Google Scholar 

  30. Berger DH, Jardines LA, Chang H, Ruggeri B. Activation of Raf-1 in human pancreatic adenocarcinoma. J Surg Res 1997; 69:199–204.

    Article  PubMed  CAS  Google Scholar 

  31. Lavoie JN, L’Allemain G, Brtinet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996;271:20608–20616.

    Article  PubMed  CAS  Google Scholar 

  32. Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res 1997; 237:1–6.

    Article  PubMed  CAS  Google Scholar 

  33. Tietz NW, Tietz NW, ed. Fundamentals of Clinical Chem- istry. Philadelphia: WB Saunders, 1976, p 1148.

    Google Scholar 

  34. McDade TP, Perugini RA, Vittimberga FJ, Carrigan RC, Callery MP. Salicylates inhibit NF-ΚB activation and enhance TNF-a-induced apoptosis in human pancreatic cancer cells. J Surg Res 1999;83:56–61.

    Article  PubMed  CAS  Google Scholar 

  35. Mitchell JA, Akarasereenont P, Thiermermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal anti-inflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. ProcNatl Acad Sci 1993;90:11693–11697.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perugini, R.A., McDade, T.P., Vittimberga, F.J. et al. Sodium salicylate inhibits proliferation and induces Gl cell cycle arrest in human pancreatic cancer cell lines. J Gastrointest Surg 4, 24–33 (2000). https://doi.org/10.1016/S1091-255X(00)80029-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1091-255X(00)80029-3

Key words

Navigation