Skip to main content
Log in

Alterations in Maternal Corticosteroid Levels Influence Fetal Urine and Lung Liquid Production

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

This study was designed to test the hypotheses that disruption of maternal adrenal secretion in late pregnancy requires fetal adaptations in order to maintain fetal blood volume and fetal viability.

Methods

Pregnant ewes were adrenalectomized at approximately 112 days, and Cortisol and aldosterone were replaced to either normal pregnant levels (with 1 mg/kg per day of Cortisol and 3 μg/kg per day of aldosterone) or normal nonpregnant levels of aldosterone or Cortisol (0.5 mg/kg per day of Cortisol or 1.5 μg/kg per day of aldosterone). Fetal blood volume, blood pressure, lung liquid production, urine production, free water clearance, and glomerular filtration rate were measured at 130 days. In a separate group, fetal organ blood flow was measured.

Results

Fetal blood volume was not significantly decreased by disruption of maternal corticosteroid secretion. However fetal urine production and free water clearance were reduced in fetuses of low Cortisol or low aldosterone ewes. Fetal lung liquid secretion was also significantly reduced in the low aldosterone group. The glomerular filtration rate was reduced in fetuses of all adrenalectomized ewes, regardless of replacement dose. Fetal blood pressure was significantly reduced in the fetuses of low aldosterone ewes; blood flow to several fetal organs was increased in this group, indicating that decreased vascular resistance may contribute to the relative hypotension.

Conclusion

Alterations in maternal adrenal corticosteroid levels resulted in fetal adaptation to maintain fetal blood volume despite relative maternal hypovolemia. These adaptations occurred at the expense of fetal urine and lung liquid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carr BR, Parker CR, Madden JD, MacDonald PC, Porter JC. Maternal adrenocorticotropin and Cortisol relationships throughout human pregnancy. Am J Obstet Gynecol 1981;139:416–22.

    Article  CAS  PubMed  Google Scholar 

  2. Bell ME, Wood CE, Keller-Wood M. Influence of reproductive state on pituitary-adrenal activity in the ewe. Domestic Animal Endocrinol 1991;8:245–54.

    Article  CAS  Google Scholar 

  3. Coe CL, Murai JT, Wiener SG, Levine S, Siiteri PK. Rapid Cortisol and corticosteroid-binding globulin responses during pregnancy and after estrogen administration in the squirrel monkey. Endocrinology 1986;118:435–40.

    Article  CAS  PubMed  Google Scholar 

  4. Keller-Wood M, Cudd TA, Norman W, Caldwell SM, Wood CE. Sheep model for study of maternal adrenal gland function during pregnancy. Lab Anim Sci 1998;48:507–12.

    CAS  PubMed  Google Scholar 

  5. Albert E, Dalaker K, Jorde R, Berge LN. Addison’s disease and pregnancy. Acta Obstet Gynecol Scand 1989;68:185–7.

    Article  CAS  PubMed  Google Scholar 

  6. Khunda S. Pregnancy and Addison’s disease. Obstet Gynecol 1972;39:431–4.

    CAS  PubMed  Google Scholar 

  7. Jensen E, Wood C, Keller-Wood M. The normal increase in adrenal secretion during pregnancy contributes to maternal volume expansion and fetal homeostasis. J Soc Gynecol Investig 2002;9:362–71.

    Article  CAS  PubMed  Google Scholar 

  8. Daniel SS, James LS, Stark RI, Tropper PJ. Prevention of the normal expansion of maternal plasma volume: A model for chronic fetal hypoxemia. J Dev Physiol 1989;11:225–33.

    CAS  PubMed  Google Scholar 

  9. Stevens AD, Lumbers ER. Effects of reduced uterine blood flow on fetal cardiovascular, renal, and lung function. Am J Physiol 1990;259:R1004–11.

    CAS  PubMed  Google Scholar 

  10. Stevens AD, Lumbers ER. Effect on maternal and fetal renal function and plasma renin activity of a high salt intake by the ewe. J Dev Physiol 1986;8:267–75.

    CAS  PubMed  Google Scholar 

  11. Wood CE, Rudolph AM. Can maternal stress alter fetal adreno-corticotropin secretion? Endocrinology 1984;115:298–301.

    Article  CAS  PubMed  Google Scholar 

  12. Brace RA, Miner LK, Siderowf AD, Cheung CY. Fetal and adult urine flow and ANF responses to vascular volume expansion. Am J Physiol 1988;255:R846–50.

    CAS  PubMed  Google Scholar 

  13. Davis TA, Gause G, Perks AM, Cassin S. Effects of intravenous saline infusion on fetal ovine lung liquid secretion. Am J Physiol 1992;262:R1117–20.

    CAS  PubMed  Google Scholar 

  14. Chen HG, Wood CE. Reflex control of fetal arterial pressure and hormonal responses to slow hemorrhage. Am J Physiol 1992;262: H225–33.

    CAS  PubMed  Google Scholar 

  15. Wood CE, Cudd TA, Kane C, Engelke K. Fetal ACTH and blood pressure responses to thromboxane mimetic U46619. Am J Physiol 1993;265:R858–62.

    Article  CAS  PubMed  Google Scholar 

  16. Raff H, Kane C, Wood CE. Vasopressin responses to hypoxia and hypercapnia in late-gestation fetal sheep. Am J Physiol 1991; 260:R1077–81.

    CAS  PubMed  Google Scholar 

  17. Braith RW, Wood CE, Limacher MC, et al. Abnormal neuroendocrine responses during exercise in heart transplant recipients. Circulation 1992;86:1453–63.

    Article  CAS  PubMed  Google Scholar 

  18. Zar JH. Biostatistical analysis. Englewood Cliffs, NJ: Prentice-Hall, 1984.

    Google Scholar 

  19. Brace RA, Cheung CY. Fetal cardiovascular and endocrine responses to prolonged fetal hemorrhage. Am J Physiol 1986;251: R417–24.

    CAS  PubMed  Google Scholar 

  20. Heymann MA, Payne BD, Hoffman JIE, Rudolph AM. Blood flow measurements with radionuclide-labeled particles. Progr Cardiovasc Dis 1977;20:55–77.

    Article  CAS  Google Scholar 

  21. Tong H, Wood CE. Indomethacin attenuates the cerebral blood flow response to hypotension in late-gestation fetal sheep. Am J Physiol 1999;277:R1268–73.

    CAS  PubMed  Google Scholar 

  22. Burchfield DJ, Abrams RM, Miller R, DeVane CL. Cocaine does not compromise fetal cerebral or myocardial oxygen delivery in fetal sheep. Reprod Fertil Dev 1996;8:383–9.

    Article  CAS  PubMed  Google Scholar 

  23. Powers DR, Brace RA. Fetal cardiovascular and fluid responses to maternal volume loading with lactated Ringer’s or hypotonic saline. Am J Obstet Gynecol 1991;165:1504–15.

    Article  CAS  PubMed  Google Scholar 

  24. Bell RJ, Wintour EM. The effect of maternal water deprivation on ovine fetal blood volume. Q J Exp Physiol 1985;70:95–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ballard PL. Glucocorticoid receptors in the lung. Fed Proc 1977; 36:2660–5.

    CAS  PubMed  Google Scholar 

  26. Kim EK, Wood CE, Keller-Wood M. Characterization of 11 beta-hydroxysteroid dehydrogenase activity in fetal and adult ovine tissues. Reprod Fertil Dev 1995;7:377–83.

    Article  CAS  PubMed  Google Scholar 

  27. Wallace MJ, Hooper SB, Harding R. Effects of elevated fetal Cortisol concentrations on the volume, secretion, and reabsorption of lung liquid. Am J Physiol 1995;269:R881–7.

    CAS  PubMed  Google Scholar 

  28. Wallace MJ, Hooper SB, Harding R. Role of the adrenal glands in the maturation of lung liquid secretory mechanisms in fetal sheep. Am J Physiol 1996;270:R33–40.

    CAS  PubMed  Google Scholar 

  29. Stevens AD, Lumbers ER. The effect of maternal fluid intake on the volume and composition of fetal urine. J Dev Physiol 1985; 7:161–6.

    CAS  PubMed  Google Scholar 

  30. Hill KJ, Lumbers ER, Elbourne I. The actions of Cortisol on fetal renal function. J Dev Physiol 1988;10:85–96.

    CAS  PubMed  Google Scholar 

  31. Wood CE, Cheung CY, Brace RA. Fetal heart rate, arterial pressure, and blood volume responses to Cortisol infusion. Am J Physiol 1987;253:R904–9.

    CAS  PubMed  Google Scholar 

  32. Benson CA, Wintour EM. The effect of bilateral fetal adrenalectomy on fluid balance in the ovine fetus [published erratum appears in J Physiol (Lond) 1996 Mar 15;491(Pt 3):889]. J Physiol (Lond) 1995;489(Pt 1):235–41.

    Article  CAS  Google Scholar 

  33. Brace RA. Blood volume in the fetus and methods for its measurement. In: Nathanielsz PW, ed. Animal models in fetal medicine. Ithaca, NY: Perinatology Press, 1984; 19–37.

    Google Scholar 

  34. Brace RA, Wlodek ME, Cock ML, Harding R. Swallowing of lung liquid and amniotic fluid by the ovine fetus under normoxic and hypoxic conditions. Am J Obstet Gynecol 1994;171:764–70.

    Article  CAS  PubMed  Google Scholar 

  35. Tomoda S, Brace RA, Longo LD. Amniotic fluid volume and fetal swallowing rate in sheep. Am J Physiol 1985;249:R133–8.

    CAS  PubMed  Google Scholar 

  36. Ross MG, Ervin MG, Rappaport VJ, Youssef A, Leake RD, Fisher DA. Ovine fetal urine contribution to amniotic and allantoic compartments. Biol Neonate 1988;53:98–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen Keller-Wood PhD.

Additional information

Support for this study was provided by National Institutes of Health grant HD35175 to Dr. Keller-Wood. Dr. Jensen was supported by a postdoctoral fellowship from the Florida-Puerto Rico Affiliate of the American Heart Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, E., Wood, C.E. & Keller-Wood, M. Alterations in Maternal Corticosteroid Levels Influence Fetal Urine and Lung Liquid Production. Reprod. Sci. 10, 480–489 (2003). https://doi.org/10.1016/S1071-55760300153-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-55760300153-9

Key words

Navigation