Skip to main content
Log in

The 21-Hydroxylase-Deficient Adrenal Hyperplasias: More Than ACTH Oversecretion

  • Review
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Twenty-one hydroxylase (21-OH)-deficient classic adrenal hyperplasia (CAH) and nondassic adrenal hyperplasia (NCAH) are two of the most common genetic disorders known to man, yet the mechanism(s) resulting in steroid excess remains unclear. Overactivation of the hypothalamic-pituitary-adrenal (HPA) axis and increased ACTH secretion appear to be important mechanisms resulting in steroid excess in untreated patients, at least in the classic forms of the disorder. Nonetheless, most NCAH patients do not demonstrate overactivity of the HPA axis. A few of these patients may demonstrate a mild degree of ACTH hyper-responsiveness to corticotropin-releasing hormone stimulation, and up to 40% have radiologic evidence of adrenocortical hyperplasia and/or isolated adenomas, suggesting that some degree of chronic ACTH excess is present. Another mechanism resulting in adrenocortical excess in adrenal hyperplasia, and primarily in NCAH, follows the alteration in enzyme kinetics resulting from the mutation of 21-OH. The mutated enzyme product is less efficient than the wild type, resulting in an increased precursor to product ratio, independent of ACTH levels. Hence, progesterone (P4) and 17-hydroxyprogesterone (17-HP) levels in these patients may remain above normal even in the presence of excess glucocorticoid administration. Overactivity of the renin-angiotensin system may also be important in stimulating adrenocortical steroidogenesis in patients with salt-wasting and in some unth simple virilizing CAH. Alterations in ovarian and gonadotropic function, with the appearance of a polycystic ovary-like picture, also contribute to the androgen excess of these patients. Functional ovarian abnormalities in patients with CAH or NCAH may relate to a number of causes, including prenatal masculinization of the hypothalamic-pituitary-ovarian (HPO) axis by adrenal androgens, continued disruption of the HPO axis by persistently elevated P4 or androgen levels, and/or a direct glucocorticoid effect. Finally, these data suggest that the measurement of P4 or 17-HP may not be the most accurate marker of therapeutic efficacy, and suppression of both the ovaries and adrenals may be necessary for optimum steroidogenic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speiser PW, DuPont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet 1985;37:650–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones HW Jr. A long look at the adrenogenital syndrome. Johns Hopkins Med J. 1979;145:143–9.

    PubMed  Google Scholar 

  3. Jayle MF, Weinmann SH, Baulieu EE, Vllin Y. Virilisme post-pubertaire discret par deficience de l’hydroxylation de C21. Acta Endocrinol (Copenh) 1958;29:513–24.

    Article  CAS  Google Scholar 

  4. Cutler GB Jr, Laue L. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N Engl J Med 1990;323:1806–13.

    Article  Google Scholar 

  5. Griffiths KD, Anderson JM, Rudd BT, Virdi NK, Colder G, Rayner PHW. Plasma renin activity in the management of congenital adrenal hyperplasia. Arch Dis Child 1984;59:360–5.

    Article  CAS  Google Scholar 

  6. Azziz R, Dewailly D, Owerbach D. Non-classic adrenal hyperplasia: Current concepts. J Clin Endocrinol Metab 1994;78:810–5.

    CAS  PubMed  Google Scholar 

  7. Speiser PW, Dupont J, Zhu D, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest 1992;90:594–5.

    Article  Google Scholar 

  8. Wedell A, Thilen A, Ritzen EM, Stengler B, Luthman H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: Implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab 1994:78:1145–52.

    CAS  PubMed  Google Scholar 

  9. Wilson RC, Mercado AB, Cheng KC, New MI. Steroid 21-hydroxylase deficiency: Genotype may not predict phenotype. J Clin Endocrinol Metab 1995;80:2322–9.

    CAS  PubMed  Google Scholar 

  10. Sydnor KL, Kelley VC, Raile RB, Ely RS, Sayers G. Blood adrenocorticotrophin in children with congenital adrenal hyperplasia. Proc Soc Exp Biol Med 1953;82:695–7.

    Article  CAS  Google Scholar 

  11. Cacciari E, Cicognani A, Pirazzoli P, et al. GH, ACTH, TSH, LH, and FSH reserve in prepubertal girls with congenital adrenal hyperplasia. J Clin Endocrinol Metab 1976:43:1146–52.

    Article  CAS  Google Scholar 

  12. Richards GE, Grumbach MM, Kaplan SL, Conte FA. The effect of long acting glucocorticoids on menstrual abnormalities in patients with virilizing congenital adrenal hyperplasia. J Clin Endocrinol Metab 1978:47:1208–15.

    Article  CAS  Google Scholar 

  13. Moreira AC, Elias LLK. Pituitary-adrenal responses to corticotropin-releasing hormone in different degrees of adrenal 21-hydroxylase deficiency. J Clin Endocrinol Metab 1992:74:198–203.

    CAS  PubMed  Google Scholar 

  14. Blackman SS Jr. Concerning the function and origin of the reticular zone of the adrenal cortex. Bull Hopkins Hosp 1946;78:180–217.

    PubMed  Google Scholar 

  15. Jaresch S, Kornely E, Kley HK, Schlaghecke R. Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J Clin Endocrinol Metab 1992;74:685–9.

    CAS  PubMed  Google Scholar 

  16. Feuillan P, Pang S, Schurmeyer T, Avgennos PC, Chrousos GP. The hypothalamic-pituitary-adrenal axis in partial (late-onset) 21-hydroxylase deficiency. J Clin Endocrinol Metab 1988;67:154–60.

    Article  CAS  Google Scholar 

  17. Cannina E, Lobo R. Pituitary-adrenal responses to corticotro-pin-releasing factor in late onset 21-hydroxylase deficiency. Fertil Steril 1990;54:79–83.

    Article  Google Scholar 

  18. Ghizzoni L, Bernasconi S, Virdis R, et al. Dynamics of 24-hour pulsatile Cortisol, 17-hydroxyprogesterone, and androstenedione release in prepubertal patients with nonclassic 21-hydroxylase deficiency and normal prepubertal children. Metabolism 1994;43:372–7.

    Article  CAS  Google Scholar 

  19. Kater CE, Biglien EG, Wajchenberg B. Effects of continued adrenal corticotropin stimulation on the mineralocorticoid hormones in classical and nonclassical simple virilizing types of 21-hydroxylase deficiency. J Clin Endocrinol Metab 1985;60:1057–62.

    Article  CAS  Google Scholar 

  20. Azziz R, Kenney PH. Magnetic resonance imaging of the adrenal gland in women with late-onset adrenal hyperplasia. Fertil Steril 1991;56:142–4.

    Article  CAS  Google Scholar 

  21. New MI, Lorenzen F, Lerner AJ, et al. Genotyping steroid 21-hydroxylase deficiency: Hormonal reference data. J Clin Endocrinol Metab 1983;57:320–6.

    Article  CAS  Google Scholar 

  22. Kuttenen F, Couillin P, Girard F, et al. Late-onset adrenal hyperplasia in hirsutism. N Engl J Med 1985;313:224–31.

    Article  Google Scholar 

  23. Azziz R, Zacur HA. 21-Hydroxylase deficiency in female hy-perandrogenism: Screening and diagnosis. J Clin Endocrinol Metab 1989;69:577–84.

    Article  CAS  Google Scholar 

  24. Miller WL. Genetics, diagnosis, and management of 21-hydroxylase deficiency. J Clin Endocrinol Metab 1994;78:241–6.

    CAS  PubMed  Google Scholar 

  25. Lippe BM, LaFranchi SH, Lavin N, Parlow A, Coyotupa J, Kaplan SA. Serum 17-α-hydroxyprogerterone, progesterone, estradiol, and testosterone in the diagnosis and management of congenital adrenal hyperplasia. J Pediatr 1974;85:782–7.

    Article  CAS  Google Scholar 

  26. Hughes IA, Winter JSD. The application of a serum 170H-progesterone radioimmunoassay to the diagnosis and management of congenital adrenal hyperplasia. J Pediatr 1976;88:766–73.

    Article  CAS  Google Scholar 

  27. Smith R, Donald RA, Espiner EA, Glatthaar C, Abbott G, Scandrett M. The effect of different treatment regimens on hormonal profiles in congenital adrenal hyperplasia. J Clin Endocrinol Metab 1980;51:230–6.

    Article  CAS  Google Scholar 

  28. Antony G. Management of congenital adrenal hyperplasia. Lancet 1984;1:1073.

    Article  CAS  Google Scholar 

  29. Pincus DR, Keinar CJH, Wallace AM. 17-Hydroxyprogesterone rhythms and growth velocity in congenital adrenal hyperplasia. J Paediatr Child Health 1993;29:302–4.

    Article  CAS  Google Scholar 

  30. Gunnala S, Clements L, Azziz R. Excessive preovulatory adrenocortical secretion of progesterone (P4) in 21-hydroxylase (21-OH) deficient salt-wasting classic adrenal hyperplasia (SWCAH): No effect on oocyte quality or fertilizability. The American Reproductive Medicine Society, Abstract O-086, 1995.

    Google Scholar 

  31. Fiet J, Gueux B, Raux-Demay MC, et al. Increased plasma 21-deoxycorticosterone (21-DB) levels in late-onset adrenal 21-hydroxylase deficiency suggest a mild defect of the mineralocorticoid pathway. J Clin Endocrinol Metab 1989;68:542–7.

    Article  CAS  Google Scholar 

  32. Hague WM, Adams J, Rodda C, et al. The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin Endocrinol (Oxf) 1990;33:501–10.

    Article  CAS  Google Scholar 

  33. Enckson CF, Magoffin DA, Jones KL. Theca function in polycystic ovaries of a patient with virilizing congenital adrenal hyperplasia. Fertil Stenl 1989;51:173–6.

    Article  Google Scholar 

  34. Barnes RB, Rosenfield RL, Ehrmann DA, et al. Ovarian hyperandrogenism as a result of congenital adrenal virilizing disorders: Evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994;79:1328–33.

    CAS  Google Scholar 

  35. Hughes IA, Read GF. Menarche and subsequent ovarian function in girls with congenital adrenal hyperplasia. Horm Res 1982;16:100–6.

    Article  CAS  Google Scholar 

  36. Levin JH, Carmina E, Lobo RA. Is the inappropriate gonadotropin secretion of patients with polycystic ovary syndrome similar to that of patients with adult-onset congenital adrenal hyperplasia? Fertil Steril 1991;56:635–40.

    Article  CAS  Google Scholar 

  37. Dewailly D, Vantyghem-Haudiquet MC, Sainsard C, et al. Clinical and biological phenotypes in late-onset 21-hydroxylase deficiency. J Clin Endocrinol Metab 1986;63:418–23.

    Article  CAS  Google Scholar 

  38. Feldman S, Billaud L, Thalabard JC, ct al. Fertility in women with late-onset adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 1992;74:635–9.

    CAS  PubMed  Google Scholar 

  39. Carmina E, Lobo RA. Ovarian suppression reduces clinical and endocrine expression of late-onset congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Fertil Steril 1994;62:738–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported in part by grant ROI-HD29364 from the National Institutes of Health, Bethesda, Maryland (RA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azziz, R., Slayden, S.M. The 21-Hydroxylase-Deficient Adrenal Hyperplasias: More Than ACTH Oversecretion. Reprod. Sci. 3, 297–302 (1996). https://doi.org/10.1016/S1071-5576(96)00044-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-5576(96)00044-5

Key words

Navigation