Skip to main content
Log in

The Role of Leukocyte Traffic and Activation in Parturition

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

This review focuses on the contribution of immune cell trafficking and activities during the initial phase of activation in the process of parturition. Although uterine contractile activity has been the predominant focus for the mechanism that initiates labor, significant cellular and biochemical chanes cause remodeling of the cervix well before term. A convergence of evidence suggests that inflammatory processes that involve prostaglandins, nitric oxide, cytokines, as well as systemic and paracrine endocrine mediators may enhance uterine contractility, promote ripening of the cervx, and thus constitute an integrative hypothesis for the initiation of labor.

Methods

Techniques to study the uterus and cervix of pregnant and virgin C3H/HeN mice included light and fluorescence microscopy. Tissues were processed by histochemistry and immunofluorescence. Analytic approaches to enumerae macrophages and assess activation included quantitative stereologic morphometry and laser scanning cytometry.

Results

The transition between relative quiescene of the uterus and enhanced contractility involed migration of macrophages from the uterine endometrium and activation of macrophages in the cervix. Before birth, macrophages migrae into the cervix and are activated in the myometrium.

Conclusion

Immune cell trafficking and activation are part of the initial mechanism that promotes ripening of the cervix, enhances uterine contractility, and initiates parturition. Markers for the conclusion of pregnancy may have diagnostic or therapeutic value to assess the normal progress of labor or identify women at risk of preterm labor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Challis JR, Sloboda DM, Alfaidy N, et al. Prostaglandins and mechanisms of preterm birth. Reproduction 2002;124(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  2. Creasy RK. Preventing preterm birth. N Engl J Med 1991;325(1):727–729.

    Article  CAS  PubMed  Google Scholar 

  3. Longo LD, Yellon S. Biological timekeeping during pregnancy and the role of circadian rhythms in parturition. In: Kunzel W, Jenson A, eds. The endocrine control of the fetus. Springer-Verlag: Berlin, 1988:173–191.

    Chapter  Google Scholar 

  4. Liggins GC, Fairclough RJ, Grieves SA, Forster CS, Knox BS. Parturition in the sheep. In: Knight J, O’Connor M, eds. The fetus and birth. Amsterdam: Elsevier, 1977:5–30.

    Google Scholar 

  5. Gibb W, Challis JR. Mechanisms of term and preterm birth. J Obstet Gynaecol Can 2002;24(11):874–883.

    Article  CAS  PubMed  Google Scholar 

  6. Whittle WL, Patel FA, Alfaidy N, et al. Glucocorticoid regulation of human and ovine parturition: The relationship between fetal hypothalamic-pituitary-adrenal axis activation and intrauterine prostaglandin production. Biol Reprod 2001;64(4):1019–1032.

    Article  CAS  PubMed  Google Scholar 

  7. Casey ML, MacDonald PC. The endocrinology of human parturition. Ann N Y Acad Sci 1988;825:273–284.

    Google Scholar 

  8. Casey ML, MacDonald PC. Distinction between the initiation o parturition and the onset of labor. Semin Reprod Endocrinol 1993;11:272–284.

    Article  Google Scholar 

  9. Haluska GJ, Wells TR, Hirst JJ, Brenner RM, Sadowsky DW, Novy MJ. Progesterone receptor localization and isoforms in myometrium, decidua, and fetal membrances from rhesus macques: Evidence for functional progesterone withdrawal at parturition. J Soc Gynecol Investig 2002;9(3):125–136.

    CAS  PubMed  Google Scholar 

  10. Mesiano S, Chan EC, Fitter JT, Kwek K, Yeo G, Smith R. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab 2002;87(6):2924–2930.

    Article  CAS  PubMed  Google Scholar 

  11. Reis FM, Fadalti M, Florio P, Petraglia F. Putative role of placental corticotropin-releasing factor in the mechanisms of human parturition. J So Gynecol Investig 1999;6(3):109–119.

    Article  CAS  Google Scholar 

  12. Elovitz MA, Ascher-Landsberg J, Saunders T, Phillippe M. The mechanisms underlying the stimulatory effects of thrombin on myometrial smooth muscle. Am J Obstet Gynecol 2000;183(3):674–681.

    Article  CAS  PubMed  Google Scholar 

  13. Challis JR, Lye SL, Gibb W. Prostaglandins and parturition. Ann N y Acad Sci 1997;828:254–267.

    Article  CAS  PubMed  Google Scholar 

  14. Liggins GC. Initiation of spontaneous labor. Clin Obstet Gynecol 1983;26(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  15. Liggins GC. Premature parturition after infusion of corticotrophin or cortisol into foetal lambs. J Endocrinol 1968;42:323–329.

    Article  CAS  PubMed  Google Scholar 

  16. Ligins GC. Premature delivery of foetal lambs infused with glucocorticoids. J Endocrinol 1969;45:515–523.

    Article  Google Scholar 

  17. MacIsaac RJ, Carson RS, Horvath AP. Premature birth of live lambs induced by pulsatile infusion of ACTH. J Endocrinol 1990;124:99–107.

    Article  CAS  PubMed  Google Scholar 

  18. Nathanielsz PW, Buster JE, Jenkin G, Jorgensen G, Thorburn GD. Induction of premature delivery in sheep following infusion of cortisol to the fetus: The effect of maternal progestagen treatment on the C21-steroid-17 alpha-hydroxylase, C-17,20 lyase and aromatase pathways. J Dev Physiol 1988;10(3):257–270.

    CAS  PubMed  Google Scholar 

  19. Apostolakis EM, Rice KE, Longo LD, Seron-ferre M, Yellon SM. Time of day of birth and absence of endocrine and uterine contractile activity rhythms in sheep. Am J Physiol 1993;264(4 Pt 1):E534–E540.

    CAS  PubMed  Google Scholar 

  20. Jacobs RA, Young IR, Hollingworth SA, Thorburn GD. Chronic administration of low doses of adrenocorticotropin to hypophysectomized fetal sheep leads to normal term labor. Endocrinology 1994;134(3):1389–1394.

    Article  CAS  PubMed  Google Scholar 

  21. Lye SJ, Sprague CL, Mitchell BF, Challis JR. Activation of ovine fetal adrenal function by pulsatile or continuous administration of adrenocorticotropin-(1-24). I Effects on fetal plasma corticosteroids. Endocrinology 1983;113(2):770–776.

    Article  CAS  PubMed  Google Scholar 

  22. Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: Are there long-term consequences of the life insurance? Proc Nutr Soc 1998;57(1):113–122.

    Article  CAS  PubMed  Google Scholar 

  23. Craddock CG. Corticosteroid-induced lymphopenia, immunosuppression, and body defense. Ann Intern Med 1978;88(4):564–566.

    Article  CAS  PubMed  Google Scholar 

  24. Cato AC, Wade E. Molecular mechanisms of anti-inflammatory action of glucocorticoids. Bioessays 1996;18(5):371–378.

    Article  CAS  PubMed  Google Scholar 

  25. Amsterdam A, Tajima K, Sasson R. Cell-specific regulation of apoptosis by glucocorticoids: Implication to their anti-inflammaory action. Biochem Pharmacol 2002;64(5–6):843–850.

    Article  CAS  PubMed  Google Scholar 

  26. Buhimschi C, Boyle MB, Garfield RE. Electrical activity of the human uterus during pregnancy as recorded from the abdominal surface. Obstet Gynecol 1997;90(1):102–111.

    Article  CAS  PubMed  Google Scholar 

  27. Buhimschi C, Garfield RE. Uterine contractility as assessed by abdominal surface recording of electromyographic activity in rats during pregnancy. Am J Obstet Gynecol 1996;174(2):744–753.

    Article  CAS  PubMed  Google Scholar 

  28. Towell ME, Liggins GC. The effect of labour on uterine blood flow in the pregnant ewe. Q J Exp Physiol Cogn Med Sci 1976;61(1):23–33.

    CAS  PubMed  Google Scholar 

  29. Wolfs GM, van Leeuwen M. Electromyographic observations on the human uterus during labour. Acta Obstet Gynecol Scand 1979;90 Suppl:1–61.

    Article  CAS  Google Scholar 

  30. Harding R, Poore ER, Bailey A, Thorburn GD, Jansen CA, Nathanielsz PW. Electromyographic activity of the nonpregnant and pregnant sheep uterus. Am J Obstet Gynecol 1982;142(4):448–457.

    Article  CAS  PubMed  Google Scholar 

  31. Demianczuk N, Towell ME, Garfield RE. Myometrial electrophysiologic activity and gap junctions in the pregnant rabbit. Am J Obstet Gynecol 1984;149(5):485–491.

    Article  CAS  PubMed  Google Scholar 

  32. Verhoeff A, Garfield RE, Ramonkdt J, Wallenburg HC. Elecrical and mechanical uterine activity and gap junctions in peripartal sheep. Am J Obstet Gynecol 1985;153(4):447–454.

    Article  CAS  PubMed  Google Scholar 

  33. Garfield RE, Jain V, Saade GR. Uterine contraction. In: Knobil E, Neill JD, eds. Encyclopedia of Reproduction. New York: Academic Press, 1998;932–942 (Vol. 4).

    Google Scholar 

  34. Korita D, Sagawa N, Itoh H, et al. Cyclic mechanical stretch augments prostacyclin production in cultured human uterine myometrial cells from pregnant women: Possible involvement of up-regulation of prostacyclin synthase expression. J Clin Endocrinol Metab 2002;87(11):5209–5219.

    Article  CAS  PubMed  Google Scholar 

  35. Eswaran H, Preissl H, Wilson JD, Murphy P, Robinson SE, Lowery CL. First magnetomyographic recordings of uterine activity with spatial-termporal information with a 151-channel sensor array. Am J Obstet Gynecol 2002;187(1):145–151.

    Article  PubMed  Google Scholar 

  36. Mackler AM, Ducsay CA, Veldhuis JD, Yellon SM. Maturation of spontaneous and agonist-induced uterine contractions in the peripartum mouse uterus. Biol Reprod 1999;61(4):873–878.

    Article  CAS  PubMed  Google Scholar 

  37. Iams JD, Newman RB, Thom EA, et al. Frequency of uterine contractions and the risk of spontaneous preterm delivery. N Engl J Med 2002;346(4):250–255.

    Article  PubMed  Google Scholar 

  38. Buhimschi C, Boyle MD, Saade GR, Garfield RE. Uterine activity during pregnancy and labor assessed by simultaneous recordings from the myometrium and abdominal surface in the rat. Am J Obstet Gynecol 1998;178(4):881–822.

    Article  Google Scholar 

  39. Fuchs AR. Uterine activity in late pregnancy and during parturition in the rat. Biol Reprod 1969;1(4):344–353

    Article  CAS  PubMed  Google Scholar 

  40. Anderson GF, Kawarabayashi T, Marshall JM. Effect of indomethacin and aspirin on uterine activity in pregnant rats: Comparison of circular and longitudinal muscle. Biol Reprod 1981;24(2):359–372.

    Article  CAS  PubMed  Google Scholar 

  41. Benegtsson B, Chow EM, Marshall JM. Activity of circular muscle of rat uterus at different times in pregnancy. Am J Physiol 1984;246(3 Pt 1):C216–C223.

    Article  Google Scholar 

  42. Izumi H, Byam Smith M, Garfield RE. Gestational changes in oxytocin-and endothelin-1-induced contractility of pregnant rat myometrium. Eur J Pharmacol 1995;278(3):187–194.

    Article  CAS  PubMed  Google Scholar 

  43. Gomez R, Ghezzi F, Romero R, Munoz H. Tolosa JE, Rojas I. Premature labor and intra-amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatol 1995;22(2):281–342.

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell MD. The mechanism(s) of human parturition. J Dev Physiol 1984;6(1):107–118.

    CAS  PubMed  Google Scholar 

  45. Novy MJ, Liggins GC. Role of prostaglandins, prostacyclin, and thromboxanes in the physiologic control of the uterus and in parturition. Semin Perinatol 1980;4(1):45–66.

    CAS  PubMed  Google Scholar 

  46. Romero R, Mazor M, Wu YK, et al. Infection in the pathogenesis of preterm labor. Semin Perinatol 1988;12(4):262–279.

    CAS  PubMed  Google Scholar 

  47. Romero R, Wu YK, Mazor M, Hobbins JC, Mitchell MD. Amniotic fluid prostaglandin E2 in preterm labor. Prostaglandins Leukot Essent Fatty Acids 1988;34(3):141–145.

    Article  CAS  PubMed  Google Scholar 

  48. TambyRaja RL, Salmon JA, Karim SM, Ratnam SS. F prostaglandin levels in amniotic fluid in premature labour. Prostaglandins 1977;13(2):339–348.

    Article  CAS  Google Scholar 

  49. Willman EA, Collins WP. The metabolism of prostaglandin E2 by tissues from the human uterus and foeto-placental unit. Acta Endocrinol (Copenhagen) 1978;87(3):632–642.

    Article  CAS  Google Scholar 

  50. Kinoshita K, Satoh H, Sakamoto S. Biosynthesis of prostaglandin in human decidua, amnion chorion, and villi. Endocrinol Jpn 1977;24:343–350.

    Article  CAS  Google Scholar 

  51. Mitchell MD, Bibby J, Hicks BR, Turnbull AC. Specific production of prostaglandin E by human amnion in vitro. Prostaglandins 1978;15(2):377–382.

    Article  CAS  PubMed  Google Scholar 

  52. Van Meir CA, Ramirez MM, Matthews SG, Calder AA, Keirse MJ, Challis JR. Chorionic prostaglandin catabolism is decreased in the lower uterine segment with term labour. Placenta 1997;18(2–3):109–114.

    Article  PubMed  Google Scholar 

  53. Boquet M, Cebral E, Motta A, Beron DA, Gimeno MA. Relationship between mouse uterine contractility, nitric oxide and prostaglandim production in early pregnancy. Prostaglandins Leukot Essent Fatty Acids 1998;59(3):163–167.

    Article  CAS  PubMed  Google Scholar 

  54. Fuchs AR, Fuchs F. Endocrinology of human parturition: A review. Br J Obstet Gynaecol 1984;91(10):948–967.

    Article  CAS  PubMed  Google Scholar 

  55. Wu WX, Ma XH, Zhang Q, Nathanielsz PW. Characterization of topology-, gestation-and labor-related changes of a cassette of myometrial contraction-associated protein mRNA in the pregnant baboon myometrium. J Endocrinol 2001;171(3):445–453.

    Article  CAS  PubMed  Google Scholar 

  56. Lim H, Paria BC, Das SK, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 1997;91(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  57. Tsuboi K, Sugimoto Y, Iwane A, Yamamoto K, Yamamoto S, Ichikawa A. Uterine expression of prostaglandin H2 synthase in late pregnancy and during parturition in prostaglandin F receptor-deficient mice. Endocrinology 2000;141(1):315–324.

    Article  CAS  PubMed  Google Scholar 

  58. Sugimoto Y, Yamasaki A, Segi E, et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science 1997;277(5326):681–683.

    Article  CAS  PubMed  Google Scholar 

  59. Norwitz ER, Starkey PM, Lopez Bernal A, Turnbull AC. Identification by flow cytometry of the prostaglandin-producing cell populations of term human decidua. J Endocrinol 1991;131(2):327–334.

    Article  CAS  PubMed  Google Scholar 

  60. Norwitz ER, Lopez BA, Starkey PM. Tumor necrosis factoralpha selectively stijulates prostaglandin F2 alpha production by macrophages in human term decidua. Am J Obstet Gynecol 1992;167(3):815–820.

    Article  CAS  PubMed  Google Scholar 

  61. Matthews CJ, Searle RF. The role of prostaglandins in the immunosuppressive effects of supernatants from adherent cells of murine decidual tissue. J Reprod Immunol 1987;12(2):109–124.

    Article  CAS  PubMed  Google Scholar 

  62. Tawfik OW, Hunt JS, Wood GW. Implication of prostaglandin E2 in soluble factor-mediated immune suppression by murine decidual cells. Am J Reprod Immunol Microbiol 1986;12(4):111–117.

    Article  CAS  PubMed  Google Scholar 

  63. Chwalisz K, Benson M, Scholz P, Daum J, Beier HM, Hegele-Hartung C. Cervical ripening with the cytokines interleukin 8, interleukin 1 beta and tumour necrosis factor alpha in guineapigs. Hum Reprod 1994;9(11):2173–2181.

    Article  CAS  PubMed  Google Scholar 

  64. Opsjon S, Wathen NC, Tingulstad S, et al. Tumor necrosis factor, interleukin-1, and interleukin-6 in normal human pregnancy. Am J Obstet Gynecol 1993;169(2 Pt 1):397–404.

    Article  Google Scholar 

  65. Romero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest 1990;85(5):1392–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Romero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition. Am J Obstet Gynecol 1991;165(4 Pt 1):813–820.

    Article  CAS  PubMed  Google Scholar 

  67. Romero R, Parvizi ST, Oyarzun E, et al. Amniotic fluid interleukin-1 in spontaneous labor at term. J Reprod Med 1990;35(3):235–238.

    CAS  PubMed  Google Scholar 

  68. Dudley DJ. Immunoendocrinology of preterm labor: The link between corticotropin-releasing hormone and inflammation. Am J Obstet Gynecol 1999;180(1 Pt 3):S251–S256.

    Article  CAS  PubMed  Google Scholar 

  69. Abbas AK, Lichtman AH, Pober JS. Activation of T lymphocytes. In: Schmitt W, Hacker HN, Ehlers J, eds. Cellular and molecular immunology. Philadelphia: W.B. Saunders Company, 2000:161–181.

    Google Scholar 

  70. Janeway CA Jr, Travers P, Walport M, Capra JD. T-cell mediated immunity. In: Austin P, Lawrence E, eds. Immunobiology: The immune system in health and disease. New York: Garland Publishing, 1999:274–275.

    Google Scholar 

  71. Allport VC, Pieber D, Slater DM, Newton R, White JO, Bennett PR. Human labour is associaed with nuclear factor-kappaB activity which mediates cyclo-oxygenase-2 expression and is involved with the “functional progesterone withdrawal.” Mol Hum Reprod 2001;7(6):581–586.

    Article  CAS  PubMed  Google Scholar 

  72. Elliott CL, Allport VC, Loudon JA, Wu GD, Bennett RP. Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Reprod 2001;7(8):787–790.

    Article  CAS  PubMed  Google Scholar 

  73. Chen HL, Kamath R, Pace JL, Russell SW, Hunt JS. Expression of the interferon-gamma receptor gene in mouse placentas is related to stage of gestation and is restricted to specific subpopulations of trophoblast cells. Placenta 1994;15(2):109–121.

    Article  CAS  PubMed  Google Scholar 

  74. Fidel PL Jr, Romero R, Wolf N, et al. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol 1994;170(5 pt 1):1467–1475.

    Article  CAS  PubMed  Google Scholar 

  75. Bukovsky A, Caudle MR, Keenan JA, Wimalasena J, Upadhyaya NB, Van Meter SE. Is corpus luteum regression an immune-mediated event? Localization of immune system components and luteinizing hormone recptor in human corpora lutea. Biol Reprod 1995;53(6):1373–1384.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao Y, Burbach JA, Roby KF, Terranova PF, Brannian JD. Macrophages are the major source of tumor necrosis factor alpha in the porcine corpus luteum. Biol Reprod 1998;59(6):1385–1391.

    Article  CAS  PubMed  Google Scholar 

  77. Cohen PE, Nishmura K, Zhu L, Pollard JW. Macrophages: Important accessory cells for reproductive function. J Leukoc Biol 1999;66(5):765–772.

    Article  CAS  PubMed  Google Scholar 

  78. Olson KK, Townson DH. Prolactin-induced expression of intercellular adhesion molecule-1 and the accumulation of monocytes/macrophages during regression of the rat corpus luteum. Biol Reprod 2000;62(6):1571–1578.

    Article  CAS  PubMed  Google Scholar 

  79. Paavola LG. The corpus luteum of the guinea pig. Fine structure at the time of maximum progesterone secretion and during regression. Am J Anat 1977;150(4):565–603.

    Article  CAS  PubMed  Google Scholar 

  80. Padykula HA, Tansey TR. The occurrence of uterine stromal and intraepithelial monocytes and heterophils during normal late pregnancy in the rat. Anat Rec 1979;193(3):329–356.

    Article  CAS  PubMed  Google Scholar 

  81. Sacks G, Sargent I, Redman C. An innate view of human pregnancy. Immunol Today 1999;20(3):114–118.

    Article  CAS  PubMed  Google Scholar 

  82. Salamonsen LA, Kovacs GT, Findlay JK. Current concepts of the mechanisms of menstruation. Baillieres Best Pract Res Clin Obstet Gynaecol 1999;13(2):161–179.

    Article  CAS  PubMed  Google Scholar 

  83. Kwak JY, Gilman-Sachs A, Moretti M, Beaman KD, Beer AE. Natural killer cell cytotoxicity and paternal lymphocyte immunization in women with recurrent spontaneous abortions. Am J Reprod Immunol 1998;40(5):352–358.

    Article  CAS  PubMed  Google Scholar 

  84. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991–1045.

    Article  CAS  PubMed  Google Scholar 

  85. Wood GW. Immunohistological identification of macrophages in murine placentgae, yolk-sac membranes and pregnant uteri. Placenta 1980;1(4):309–317.

    Article  CAS  PubMed  Google Scholar 

  86. De M, Wood GW. Analysis of the number and distribution of macrophages, lymphocytes, and granulocytes in the mouse uterus from implantation through parturition. J Leukoc Biol 1991;50(4):381–392.

    Article  CAS  PubMed  Google Scholar 

  87. Mackler AM, Barber EM, Takikawa O, Pollard JW. Indoleamine 2–3-dioxygenase is regulated by interferon-γ in the mouse placenta during Listeria monocytogenes infection. J Immunol. In press.

  88. Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281(5380):1191–1193.

    Article  CAS  PubMed  Google Scholar 

  89. Hunt JS, Manning LS, Mitchell D, Selanders JR, Wood GW. Localization and characterization of macrophages in murine uterus. J Leukoc Biol 1985;38(2):255–265.

    Article  CAS  PubMed  Google Scholar 

  90. Kearns M, Lala PK. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus. J Exp Med 1982;155(5):1537–1554.

    Article  CAS  PubMed  Google Scholar 

  91. Kearns M, Lala PK. Radioautographic analysis of surface markers on decidual cells shared by cells of the lymphomyeloid tissues. Am J Reprod Immunol Microbiol 1985;9(2):39–47.

    Article  CAS  PubMed  Google Scholar 

  92. Huntg JS, Petroff MG, Burnett TG. Uterine leukocytes: Key players in pregnancy. Semin Cell Dev Biol 2000;11(2):127–137.

    Article  Google Scholar 

  93. Hunt JS, Manning LS, Wood GW. Macrophages in murine uterus are immunosuppressive. Cell Immunol 1984;85(2):499–510.

    Article  CAS  PubMed  Google Scholar 

  94. Guleria I, Pollard JW. The trophoblast is a component of the innate immune system during pregnancy. Nat Med 2000;6(5):589–593.

    Article  CAS  PubMed  Google Scholar 

  95. Hunt JS. Immunologically relevant cells in the uterus. Biol Reprod 1994;50(3):461–466.

    Article  CAS  PubMed  Google Scholar 

  96. Huang J, Roby KF, Pace JL, Russell SW, Hunt JS. Cellular localization and hormonal regulation of inducible nitric oxide synthase in cycling mouse uterus. J Leukoc Biol 1995;57(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  97. Goto M, Yamaguchi Y, Ichiguchi O, et al. Phenotype and localization of macrophages expressing inducible nitric oxide synthase in rat hepatic allograft rejection. Transplantation 1997;64(2):303–310.

    Article  CAS  PubMed  Google Scholar 

  98. Hunt JS, Miller L, Platt JS. Hormonal regulation of uterine macrophages. Dev Immunol 1998;6(1–2):105–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jungi TW, Adler H, Adler B, Thony B, Thoney M, Krampe M, Peterhans E. Inducible nitric oxide synthase of macrophages. Present knowledge and evidence for species-specific regulation. Vet Immunol Immunopathol 1996;54(1–4):323–330.

    Article  CAS  PubMed  Google Scholar 

  100. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323–350.

    Article  CAS  PubMed  Google Scholar 

  101. Mason GL, Yang Z, Olchowy TW, Jian Z, Bochsler PN. Nitric oxide production and expression and expression of inducible nitric oxide synthase by bovine alveolar macrophages. Vet Immunol Immunopathoal 1996;53(1–2):15–27.

    Article  CAS  Google Scholar 

  102. Bansal RK, Goldsmith PC, He Y, Zaloudek CJ, Ecker JL, Riemer RK. A declinein myometrial nitric oxide synthase expression is associated with labor and delivery. J Clin Invest 1997;99(10):2502–2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Heymann MA, Bootstaylor B, Roman C, et al. Glyceryl trinitrate stops active labor in sheep. In: Moncada S, Feelish M, Busse R, Higgs EA, eds. The biology of nitric oxide. London: Portland Press, 1993:201–203.

    Google Scholar 

  104. Jennings RW, MacGillivray TE, Harrison MR. Nitric oxide ablates preterm labor in the rhesus monkey. J Matern Fetal Med 1993;2:170–175.

    Article  CAS  Google Scholar 

  105. Riemer RK, Buscher C, Bansal RK, Black SM, He Y, Natuzzi ES. Increased expression of nitric oxide synthase in the myometrium of the pregnant rat uterus. Am J Physiol 1997;272(6 Pt 1):E1008–E1015.

    CAS  PubMed  Google Scholar 

  106. Natuzzi ES, Ursell PC, Harrison M, Buscher C, Riemer RK. Nitric oxide synthase activity in the pregnant uterus decreases at parturition. Biochem Biophys Res Commun 1993;194(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  107. Sladek SM, Regenstein AC, Lykins D, Roberts JM. Nitric oxide synthase activity in pregnant rabbit uterus decreases on the last day of pregnancy. Am J Obstet Gynecol 1993;169(5):1285–1291.

    Article  CAS  PubMed  Google Scholar 

  108. MacMicking JD, Nathan C, Hom G, et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 1995;81(4):641–650.

    Article  CAS  PubMed  Google Scholar 

  109. Roh CR, Oh WJ, Yoon BK, Lee JH. Up-regulationof matrix matalloproteinase-9 in human myometrium during labour: A cytokine-mediated process in uterine smooth muscle cells. Mol Hum Reprod 2000;6(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  110. Riley SC, Leask R, Chard T, Wathen NC, Calder AA, Howe DC. Secretion of matrix metalloproteinase-2, matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases into the intrauterine compartments during early pregnancy. Mol Hum Reprod 1999;5(4):376–381.

    Article  CAS  PubMed  Google Scholar 

  111. Thomson AJ, Telfer JF, Young A, et al. Leukocytes infiltrate the myometrium during human parturition: Further evidence that labour is an inflammatory process. Hum Reprod 1999;14(1):229–236.

    Article  CAS  PubMed  Google Scholar 

  112. Winkler M, Oberpichler A, Tschesche H, Ruck P, Fischer DC, Rath W. Collagenolysis in the lower uterine segment during parturition at term: Correlations with stage of cervical dilatation and duration of labor. Am J Obstet Gynecol 1999;181(1):153–158.

    Article  CAS  PubMed  Google Scholar 

  113. Junqueira LC, Zugaib M, Montes GS, Toledo OM, Krisztan RM, Shigihara KM. Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilation. Am J Obstet Gynecol 1980;138(3):273–281.

    Article  CAS  PubMed  Google Scholar 

  114. Mackler AM, Iezza G, Akin MR, McMillan P, Yellon SM. Macrophage trafficking in the uterus and cervix precedes parturition in the mouse. Biol Reprod 1999;61(4):879–883.

    Article  CAS  PubMed  Google Scholar 

  115. Pollard JW, Hunt JS, Wiktor Jedrzejczak W, Stanley ER. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol 1991;148(1):273–283.

    Article  CAS  PubMed  Google Scholar 

  116. Mackler AM, Green LM, McMillan PJ, Yellon SM. Distribution and activation of uterine mononuclear phagocytes in peripartum endometrium and myometrium of the mouse. Biol Reprod 2000;62(5):1193–1200.

    Article  CAS  PubMed  Google Scholar 

  117. Pollard JW. Role of cytokines in the pregnant uterus of interstitial implanting species. In: Bazer FW, ed. The endocrinology of pregnancy. Totowa: Humana Press, Inc., 1998:59–82.

    Chapter  Google Scholar 

  118. Bernatchez SF, Atkinson MR, Parks PJ. Expression of intercellular adhesion molecule-1 on macrophages in vitro as a marker of activation. Biomaterials 1997;18(20):1371–1378.

    Article  CAS  PubMed  Google Scholar 

  119. Leenen PJ, de Bruijn MF, Voerman JS, Campbell PA, van Ewijk W. Markers of mouse macrophage development detected by monoclonal antibodies. J Immunol Methods 1994;174(1–2):5–19.

    Article  CAS  PubMed  Google Scholar 

  120. Goebeler M, Roth J, Kunz M, Sorg C. Expression of intercellular adhesion molecule-1 by murine macrophages is up-regulated during differentiation and inflammatory activation. Immunobiology 1993;188(1–2):159–171.

    Article  CAS  PubMed  Google Scholar 

  121. Frenette PS, Wagner DD. Adhesion molecules—part 1. N Engl J Med 1996;334(23):1526–1529.

    Article  CAS  PubMed  Google Scholar 

  122. Bevilacqua MP. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 1993;11:767–804.

    Article  CAS  PubMed  Google Scholar 

  123. Losa Garcia JE, Rodriguez FM, Martin de Cabo MR, et al. Evaluation of inflammatory cytokine secretion by human alveolar macrophages. Mediators Inflamm 1999;8(1):43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hammermann R, Dreissig MD, Mossner J, et al. Nuclear factor-kappaB mediates simultaneous inductionof inducible nitricoxide synthase and up-regulation of the cationic amino acid transporter CAT-2B in rat alveolar macrophages. Mol Pharmacol 2000;58(6):1294–1302.

    Article  CAS  PubMed  Google Scholar 

  125. Werb Z, Gordon S. Secretion of a specific collagenase by stimulated macrophages. J Exp Med 1975;142(2):346–360.

    Article  CAS  PubMed  Google Scholar 

  126. Buhimschi I, Ali M, Jain V, Chwalisz K, Garfield RE. Differential regulation ofnitric oxide in the rat uterus and cervix during pregnancy and labour. Hum Reprod 1996;11(8):1755–1766.

    Article  CAS  PubMed  Google Scholar 

  127. Guo CB, Kagey-Sobotka A, Lichtenstein LM, Bochner BS. Immunophenotyping and functional analysis of purified human uterine mast cells. Blood 1992;79(3):708–712.

    Article  CAS  PubMed  Google Scholar 

  128. Slukvin II, Chernyshov VP, Merkulova AA, Vodyanik MA, Kalinovsky AK. Differential expression of adhesion and homing molecules by human decidual and peripheral blood lymphocytes in early pregnancy. Cell Immunol 1994;158(1):29–45.

    Article  CAS  PubMed  Google Scholar 

  129. Calatayud S, Vivier E, Bernaud J, Merieux Y, Rigal D. Expression of a NK cell-restricted epitope on decidual large granular lymphocytes. Int Immunol 1996;8(10):1637–1642.

    Article  CAS  PubMed  Google Scholar 

  130. Ruck P, Marzusch K, Kaiserling E, et al. Distribution of cell adhesion molecules in decidua of early human pregnancy. An immunohistochemical study. Lab Invest 1994;171(1):94–101.

    Google Scholar 

  131. Ledingham MA, Thomson AJ, Jordan F, Young A, Crawford M, Norman JE. Cell adhesion molecule expression in the cervix and myometrium during pregnancy and parturition. Obstet Gynecol 2001;97(2):235–242.

    CAS  PubMed  Google Scholar 

  132. Hendricks CH, Brenner WE, Kraus G. Normal cervical dilatation pattern in late pregnancy and labor. Am J Obstet Gynecol 1970;106(7):1065–1082.

    Article  CAS  PubMed  Google Scholar 

  133. Danforth DN, Veis A, Breen M, Weinstein HG, Buckingham JC, Manalo P. The effect of pregnancy and labor on the human cervix: Changes in collagen, glycoproteins, and glycosaminoglycans. Am J Obstet Gynecol 1974;120(5):641–651.

    Article  CAS  PubMed  Google Scholar 

  134. Leppi TJ, Kinnison PA. The connective tissue ground substance in the mouse uterine cervix: An electron microscopic histochemical study. Anat Rec 1971;170(1):97–117.

    Article  CAS  PubMed  Google Scholar 

  135. Rimmer DM. The effect of pregnancy on the collagen of the uterine cervix of the mouse. J Endocrinol. 1973;57(3):413–418.

    Article  CAS  PubMed  Google Scholar 

  136. Uldbjerg N, Ekman G, Malmstrom A, Olsson K, Ulmsten U. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity. Am J Obstet Gynecol 1983;147(6):662–666.

    Article  CAS  PubMed  Google Scholar 

  137. Kitamura K, Ito A, Mori Y, Hirakawa S. Changes in he human uterine cervical collagenase with special reference to cervical ripening. Biochem Med 1979;22(3):332–338.

    Article  CAS  PubMed  Google Scholar 

  138. Minamoto T, Arai K, Hirakawa S, Nagai Y. Immunohistopregnant and nonpregnant states. Am J Obstet Gynecol 1987;156(1):138–144.

    Article  CAS  PubMed  Google Scholar 

  139. Rajabi MR, Dean DD, Beydoun SN, Woessner JF Jr. Elevated tissue levels of collagenase during dilation of uterine cervix in human parturition. Am J Obstet Gynecol 1988;159(4):971–976.

    Article  CAS  PubMed  Google Scholar 

  140. Limvarapuss C, Kanayama N, Terao T. Elastase activity of endocervical mucus in normal pregnancy. Asia Oceania J Obstet Gynaecol 1992;18(2):147–153.

    Article  CAS  PubMed  Google Scholar 

  141. Yu SY, Tozzi CA, Babiarz J, Leppert PC. Collagen changes in rat cervix in pregnancy—polarized light microscopic and electron microscopic studies. Proc Soc Exp Biol Med 1995;209(4):360–368.

    Article  CAS  PubMed  Google Scholar 

  142. O’Brien WF. Cervical ripening and labor induction: Progress and challenges. Clin Obstet Gynecol 1995;38(2):221–223.

    Article  PubMed  Google Scholar 

  143. Yoshida M, Sagawa N, Itoh H, et al. Prostaglandin F(2alpha), cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol Hum Reprod 2002;8(7):681–687.

    Article  CAS  PubMed  Google Scholar 

  144. Terakawa K, Itoh H, Sagawa N, et al. Site-specific augmentation of amnion cyclooxygenase-2 and decidua vera phospholipase-A2 expression in labor: Possible contribution of mechanical stretch and inerleukin-1 to amnion prostaglandin synthesis. J Soc Gynecol Investig 2002;9(2):68–74.

    Article  CAS  PubMed  Google Scholar 

  145. Ou CW, Chen ZQ, Qi S, Lye SJ. Expression and regulation of the messenger ribonucleic acid encoding the prostaglandin F(2alpha) receptor in the rat myometrium during pregnancy and labor. Am J Obstet Gynecol 2000;182(4):919–925.

    Article  CAS  PubMed  Google Scholar 

  146. Winkler M, Kemp B, Fischer DC, Maul H, Hlubek M, Rath W. Tissue concentrations of cytokines in the lower uterine segment during preterm parturition. J Perinat Med 2001;29(6):519–527.

    Article  CAS  PubMed  Google Scholar 

  147. Smith GC, Wu WX, Nathanielsz PW. Effects of gestational age and labor on the expression of prostanoid receptor genes in pregnant baboon cervix. Prostaglandins Other Lipid Mediat 2001;63(4):153–163.

    Article  CAS  PubMed  Google Scholar 

  148. Mahendroo MS, Porter A, Russell DW, Word RA. The parturition defect in steroid 5alpha-reductase type 1 knockout mice is due to impaired cervical ripening. Mol Endocrinol 1999;13(6):981–992.

    CAS  PubMed  Google Scholar 

  149. Minjarez D, Konda V, Word RA. Regulation of uterine 5 alpha-reductase type 1 in mice. Biol Reprod 2001;65(5):1378–1382.

    Article  CAS  PubMed  Google Scholar 

  150. Osmers R, Rath W, Adelmann-Grill BC, et al. Origin of cervical collagenase during parturition. Am J Obstet Gynecol 1992;166(6):1455–1460.

    Article  CAS  PubMed  Google Scholar 

  151. Ito A, Nakamura T, Uchiyama T, et al. Stimulation of the biosynthesis of interleukin 8 by interleukin 1 and tumor necrosis factor alpha in cultural human chorionic cells. Biol Pharm Bull 1994;17(11):1463–1467.

    Article  CAS  PubMed  Google Scholar 

  152. Rotten D, Gavignet C, Colin MC, Robert AM, Godeau G. Evolution of he elastic fiber network of the human uterine cervix before, during and after pregnancy. A quantitative evaluation by automated image analysis. Clin Physiol Biochem 1988;6(5):285–292.

    CAS  PubMed  Google Scholar 

  153. Watari M, Watari H, DiSanto ME, Chacko S, Shi GP, Strauss JF II. Pro-inflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells. Am J Pathol 1999;154(6):1755–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bokstrom H, Brannstrom M, Alexandersson M. Norstrom A. Leukocyte subpopulations in the human uterine cervical stroma aat early and term pregnancy. Hum Reprod 1997;12(3):586–590.

    Article  CAS  PubMed  Google Scholar 

  155. Collins JJ, Usip S, McCarson KE, Papka RE. Snsory nerves and neuropeptides in uterine cervical ripening. Petides 2002;23(1):167–183.

    Article  CAS  Google Scholar 

  156. Knudsen UB, Uldbjerg N, Rechberger T, Fredens K. Kosinophils in human cervical ripening. Eur J Obstet Gynecol Reprod Biol 1997;72(2):165–168.

    Article  CAS  PubMed  Google Scholar 

  157. Owiny JR, Gilbert RO, Wahl CH, Nathanielsz PW. Leukocytic invasion of the ovine cervix at parturition. J Soc Gynecol Investig 1995;2(4):593–596.

    Article  CAS  PubMed  Google Scholar 

  158. Spanggaard H, Knudsen UB, Uldbjerg N, Jeziorska M, Woolley DE, Danielsen CC. Mast cells in cervical ripening—an immunohistochemical and biomechanical study in rats. Eur J Obstet Gynecol Reprod Biol 1997;73(1):91–97.

    Article  CAS  PubMed  Google Scholar 

  159. Stjernholm Y, Sennstrom M, Granstrom L, Ekman G, Johansson O. Protein gene product 9.5-immunoreactive nerve fibers and cells in human cervix of late pregnant, postparal and non-pregnant women. Acta Obstet Gynecol Scand 1999;78(4):299–304.

    Article  CAS  PubMed  Google Scholar 

  160. Mori Y, Ito A. Cervical ripening: Biochemical regulation. In: Leppert PC, Woessner JE, eds. The extracellular matrix of the uterus, cervix and fetal membrances. Ithaca: Perinatology Press, 1991:77–86.

    Google Scholar 

  161. Fosang AJ, Handley CJ, Santer V, Lowther DA. Thorburn GD. Pregnancy-related changes in the connective tissue of the ovine cervix. Biol Reprod 1984;30(5):1223–1235.

    Article  CAS  PubMed  Google Scholar 

  162. Kuijpers TW, Hakkert BC, Hart MH, Roos D. Neutrophil migration across monolayers of cytokine-pre-stimulated endothelial cells: A role for platelete-activating factor and IL-8. J Cell Biol 1992;117(3):565–572.

    Article  CAS  PubMed  Google Scholar 

  163. El Maradny E, Kanayama N, Halim A, Machara K, Sumimoto K, Terao T. Interleukin-8 induces cervical ripening in rabbis. Am J Obstet Gynecol 1994;171(1):77–83.

    Article  PubMed  Google Scholar 

  164. Winkler M, Fischer DC, Hlubek M, van de LE, Haubeck HD, Rath W. Interleukin-1beta and interleukin-8 concentrations in the lower uterine segment during parturiton at term. Obstet Gynecol 1998;91(6):945–949.

    CAS  PubMed  Google Scholar 

  165. Sennstrom MB, Ekman G, Westergren-Thorsson G, et al. Human cervical ripening, an inflammatory process mediated by cytokines. Mol Hum Reprod 2000;6(4):375–381.

    Article  CAS  PubMed  Google Scholar 

  166. Tanaka Y, Narahara H, Takai N, Yoshimatsu J, Anai T, Miyakawa I, Interleukin-1beta and interleukin-8 in cervicovaginal fluid during pregnancy. Am J Obstet Gynecol 1998;179(3 Pt 1):644–649.

    Article  CAS  PubMed  Google Scholar 

  167. Stjernholm Y, Sennstrom M, Granstrom L, Ekman G, Liang Y, Johansson O. Neurochemical and cellular markers in human cervix of late pregnant, postparal and non-pregnant women. Acta Obstet Gynecol Scand 2000;79(7):528–537.

    Article  CAS  PubMed  Google Scholar 

  168. Kelly RW. Inflammatory mediaors and cervical ripening. J Reprod Immunol 2002;57(1–2):217–217.

    Article  CAS  PubMed  Google Scholar 

  169. Ito A, Goshowaki H, Sato T, et al. Human recombinant interleukin-1 alpha-mediated stimulation of procollagenase production and suppression of biosynthesis of tissue inhibitor of metalloproteinases in rabbit uterine cervical fibroblasts. FEBS Lett 1988;234(2):326–330.

    Article  CAS  PubMed  Google Scholar 

  170. Baggiolini M, Bretz U, Dewald B, Feigensom ME. The polymorphonuclear leukocyte. Agents Actions 1978;8(1–2):3–10.

    Article  CAS  PubMed  Google Scholar 

  171. Peveri P, Walz A, Dewald B, Baggiolini M. A novel neutrophilactivating factor produced by human mononuclear phagocytes. J Exp Med 1988;167(5):1547–1559.

    Article  CAS  PubMed  Google Scholar 

  172. Unkeless JC, Gordon S, Reich E. Secretion of plasminogen activator by stimulated macrophages. J Exp Med 1974;139(4):834–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wahl LM, Wahl SM, Mergenhagen SE, Martin GR. Collagenase production by lymphokine-activated macrophages. Science 1975;187(4173):261–263.

    Article  CAS  PubMed  Google Scholar 

  174. Huybrechts-Godin G, Peeters-Joris C, Vaes G. Partial characterization of the macrophage factor that stimulates fibroblasts to produce collagenase and to degrade collagen. Biochim Biophys Acta 1985;846(1):51–54.

    Article  CAS  PubMed  Google Scholar 

  175. Pandis GK, Papageorphiou AT, Ramanathan VG, Thompson MO, Nicolaides KH. Preinduction sonographic measurement of cervical length in the prediction of successful induction of labor. Ultrasound Obstet Gynecol 2001;18(6):623–628.

    Article  CAS  PubMed  Google Scholar 

  176. Goldenberg RL, Iams JD. Mercer BM, et al. The preterm prediction study: The value of new vs standard risk factors in predicting early and all spontaneous preterm births. NICHD MFMU Network. Am J Public Health 1998;88(2):233–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Newman RB. The preterm prediction study: Comparison of the cervical score and Bishop score for the prediction of spontaneous preterm. J Soc Gynecol Invest 1997;4:152–A.

    Article  Google Scholar 

  178. Goldenberg RL, Mercer BM, Meis PJ, Copper RL, Das A, McNelis D. The preterm prediction study: Fetal fibronectin testing and spontaneous preterm birth. NICHD Maternal Fetal Medicine Units Network. Obstet Gynecol 1996;87(5 Pt 1):643–648.

    Article  CAS  PubMed  Google Scholar 

  179. Iams JD, Goldenberg RL, Meis PJ, et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med 1996;334(9):567–572.

    Article  CAS  PubMed  Google Scholar 

  180. Ledingham MA, Thomason AJ, Young A, Macara LM, Greer IA, Norman JE. Chanes in the expression of nitric oxide synthase in the human uterine cervix during pregnancy and parturition. Mol Hum Reprod 2000;6(11):1041–1048.

    Article  CAS  PubMed  Google Scholar 

  181. Tschugguel W, Schneeberger C, Lass H, et al. Human cervical ripening is association with an increase in cervical inducible nitric oxide synthase expression. Biol Reprod 1999;60(6):1367–1372.

    Article  CAS  PubMed  Google Scholar 

  182. Nakaya Y, Yamamoto S. Hamada Y, Kamada M, Aono T, Niwa M. Inducible nitric oxide synthase in uterine smooth muscle. LifeSci 1996;58(13):L249–L255.

    Article  Google Scholar 

  183. Ali M, Buhimschi I, Chwalisz K, Garfield RE. Changes in expression of the nitric oxide synthase isoforms in rat uterus and cervix during pregnancy and parturition. Mol Hum Reprod 1997;3(11):995–1003.

    Article  CAS  PubMed  Google Scholar 

  184. Bao S, Rai J, Schreiber J. Brain nitric oxide synthase expression is enhanced in the human cervix in labor. J Soc Gynecol Investig 2001;8(3):158–164.

    Article  CAS  PubMed  Google Scholar 

  185. Marshall JM. Effects of ovarian steroids and pregnancy on adrenergic nerves of uterus and oviduct. Am J Physiol 1981;240(5):C165–C174.

    Article  CAS  PubMed  Google Scholar 

  186. Arkinstall SJ, Moye I, Jones CT. Alpha 2-adrenergic receptors in guinea pig myometrium in late pregnancy: Evidence for a predominantly postjunctional location. Am J Obstet Gynecol 1990;162(3):831–836.

    Article  CAS  PubMed  Google Scholar 

  187. Alm P, Owman C, Sjoberg NO, Stjernquist M, Sundler F. Histochemical demonstration of a concomitant reduction in neural vasoactive intestinal polypeptide, acetylcholinesterase, and noradrenaline of cat uterus during pregnancy. Neuroscience 1996;18(3):713–726.

    Article  Google Scholar 

  188. Dong YL, Gangula PR, Vallampalli C. Nitric oxide synthase isoforms in the rat uterus: Differential regulation during pregnancy and labory. J Reprod Fertil 1996;107(2):249–254.

    Article  CAS  PubMed  Google Scholar 

  189. Elmer M, Alm P, Thorbert G. Electrical field stimulation of myometrial strips from non-pregnant and pregnant guinea-pigs. Acta Physiol Scaqnd 1980;108(3):209–213.

    Article  CAS  Google Scholar 

  190. Brauer MM, Lincoln J, Sarner S, et al. Maturational changes in sympathetic and sensory innervation of the rat uterus: Effects of neonatal capsaicin treatment. Int J Dev Neurosci 1994;12(2):157–171.

    Article  CAS  PubMed  Google Scholar 

  191. Papka RE, Cotton JP, Traurig HH. Comparative distribution of neuropeptide tyrosine-, vosoactive intestinal polypetide-, substance P-immunoreactive, acetylcolinesterase-postive and noradrenergic nerves in the reproductive tract of the female rat. Cell Tissue Res 1985;242(3):475–490.

    Article  CAS  PubMed  Google Scholar 

  192. Papka RE. Some nerve endings in the rat pelvic paracervical autonomic ganglia and varicosities in the uterus contain calcitonin gene-related peptide and originate from dorsal root ganglia. Neuroscience 1990;39(2):459–470.

    Article  CAS  PubMed  Google Scholar 

  193. Papka RE, Traug HH. Distribution of subgroups of neuropeptide Y-immunoreactive and noradrenergic nerves in the female rat uterine cervix. Cell Tissue Res 1988;252(3):533–541.

    Article  CAS  PubMed  Google Scholar 

  194. Traurig HH, Papka RE, Rush ME. Effects of capsaicin on reproductive function in he female rat: Role of peptide-containing primary afferent nerves innervating the uterine cervix in the neuroendocrine copulatory response. Cell Tissue Res 1988;253(3):573–581.

    Article  CAS  PubMed  Google Scholar 

  195. Collins JJ. Lin CE, Berthoud HR, Papka RE. Vagal afferents from the uterus and cervix provide direct connections to the brainstem. Cell Tissue Res 1999;295(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  196. Lee JW, Erskine MS. Pseudorabies virus tracing of neural pathways between the uterine cervix and CNS: Effects of survival time, estrogen treatment, rhizotomy, and pelvic nerve transection. J Comp Neurol 2000;418(4):484–503.

    Article  CAS  PubMed  Google Scholar 

  197. Vera PL, Haase EB, Schramm LP. Origins of the sympathetic innervation of the cervical end of the uterus in the rat. Brain Res 1997;747(1):140–143.

    Article  CAS  PubMed  Google Scholar 

  198. Maggi CA, Patacchini R, Giuliani S, Santicioli P, Meli A. Evidence for wo independent modes of activation of the ‘efferent’ function of capsaicin-sensitive nerves. Eur J Pharmacol 1988;156(3):367–373.

    Article  CAS  PubMed  Google Scholar 

  199. Papka RE, McNeill DL. Light-and electron-microscopic study of synaptic connections in the paracervical ganglion of the female rat: Special reference to calcitonin gene-related peptide-, galanin-and tachykinin (substance P and neurokinin A)-immunoreactive nerve fibers and terminals. Cell Tissue Res 1993;271(3):417–428.

    Article  CAS  PubMed  Google Scholar 

  200. Traurig HH, Papka RE, Shew RL. Substance P and related peptides associated with the afferent and autonomic innervation of the uterus. Ann N Y Acad Sci 1991;632:304–313.

    Article  CAS  PubMed  Google Scholar 

  201. Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings; Involvement of tachykinins, calcitonin generelated peptide and other neuropeptides. Neuroscience 1988;24(3):739–768.

    Article  CAS  PubMed  Google Scholar 

  202. Papka RE, Hafemeister J, Puder BA, Usip S, Storey-Workely M. Strogen receptor-alpha and neural circuits to the spinal cord during pregnancy. J Neurosci Res 2002;70(6):808–816.

    Article  CAS  PubMed  Google Scholar 

  203. Carlson RR, De Feo VJ. Role of the pelvic nerve vs. the abdominal sympathetic nerves in the reproductive function of the female rat. Endocrinology 1965;77(6):1014–1022.

    Article  CAS  PubMed  Google Scholar 

  204. Renegar RH, Steel M, Burden HW, Hodson CA. Endocrine parameters associated with disruption of parturition after bilateral pelvic neurectomy. Proc Soc Exp Biol Med 1992;201(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  205. Spies HG, Forbes VM, Clegg MT. The influence of coitus, sucking, and prolactin injections on pregnancy in pelvic neurectomized rats. Proc Soc Exp Biol Med 1971;138:470–474.

    Article  CAS  Google Scholar 

  206. Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J. PGP 9.5-a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 1983;278(1–2):224–228.

    Article  CAS  PubMed  Google Scholar 

  207. Iams JD, Johnson FF, Creasy RK. Prevention of preterm birth. Clin Obstet Gynecol 1988;31(3):599–615.

    Article  CAS  PubMed  Google Scholar 

  208. Goldenberg RL. The management o preterm labor. Obstet Gynecol 2002;100(5 Pt 1):1020–1037.

    PubMed  Google Scholar 

  209. Gupta SK. The immunology of reproduction: Update 1998. Immunol Today 1998;19(10):433–434.

    Article  CAS  PubMed  Google Scholar 

  210. Martius J, Roos T. The role of urogenital tract infections in the etiology of preterm birth: A review. Arch Gynecol Obstet 1996;258(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  211. Vigneswaran R. Infection and preterm birth: Evidence of a common causal relationship with bronchopulmonary dysplasia and cerebral palsy. J Paediatr Child Health 2000;36(4):293–296.

    Article  CAS  PubMed  Google Scholar 

  212. Goldenberg RL, Jobe AH. Prospects for research in reproductive health and birth outcomes. JAMA 2001;285(5):633–639.

    Article  CAS  PubMed  Google Scholar 

  213. Saji F, Samekuma Y, Kamiura S, Sawai K, Shimoya K, Kimura T. Cytokine production in chorioamnionitis. J Reprod Immunol 2000;47(2):185–196.

    Article  CAS  PubMed  Google Scholar 

  214. Hirsch E, Saotome I, Hirsh D. A model of intrauterine infection and preterm delivery in mice. Am J Obstet Gynecol 1995;172(5):1598–1603.

    Article  CAS  PubMed  Google Scholar 

  215. Knox IC Jr, Hoerner JK. The role of of infection in premature rupture of the membrances. 1950. Am J Obstet Gynecol 1995;173(3 Pt 1):951–951.

    Article  PubMed  Google Scholar 

  216. Reznikoc LL, Fantuzzi G, Selzman CH, et al. Utilization of endoscopic inoculation in a mouse model of intrauterine infection-induced preterm birth: Role of interleukin 1beta. Biol Reprod 1999;60(5):1231–1238.

    Article  Google Scholar 

  217. Romero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significanceof intraamniotic infection in women with preterm labor and intact membrances. Am J Obstet Gynecol 1989;161(3):817–824.

    Article  CAS  PubMed  Google Scholar 

  218. Romero R, Mazor M, Tartakosky B. Systemic administratioon of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol 1991;165(4 Pt 1):969–971.

    Article  CAS  PubMed  Google Scholar 

  219. Romero R, Avila C, Brekus CA, Morotti R. The role of systemic and intrauterine infection in preterm parturition. Ann N Y Acad Sci 1991;622:355–375.

    Article  CAS  PubMed  Google Scholar 

  220. Hebisch G. Cytokine levels in five different fluid compartments during amniotic fluid infection and labour. Adv Exp Med Biol 1997;433:87–90.

    Article  CAS  PubMed  Google Scholar 

  221. Fidel PI Jr, Romero R, Maymon E, Hertelendy F. Bacteriainduced or bacterial product-induced preterm parturition in mice and rabbits is preceded by a significant fall in serum progesterone concentrations. J Matern Fetal Med 1998;7(5):222–226.

    CAS  PubMed  Google Scholar 

  222. Kaga N, Katsuki Y, Obata M, Shibutani Y. Repeated administration of low-dose lipopolysaccharide induces preterm delivery in mice: A model for human preterm parturition and for assessment of the therapeutic abilityof drugs against preterm delivery. Am J Obstet Gynecol 1996;174(2):754–759.

    Article  CAS  PubMed  Google Scholar 

  223. McGregor JA, French JI, Bacterial vaginosis in pregnancy. Obstet Gynecol Surv 2000;55(5 Suppl 1):S1–S19.

    Article  CAS  PubMed  Google Scholar 

  224. Armer TL, Duff P. Intraamniotic infection in patients with intact membranes and preterm labor. Obstet Gynecol Surv 1991;46(9):589–593.

    Article  CAS  PubMed  Google Scholar 

  225. Guinn DA, Goldenberg RL, Cliver SP, Owen J. Relationship of gestational age and cervical dilation to the timing of delivery. Int J Gynaecol Obstet 1999;64(3):233–237.

    Article  CAS  PubMed  Google Scholar 

  226. The Canadian Preterm Labor Investigators Group. Treatment of perterm labor with the beta-adrengergic agonist ritodrine. N Engl J Med 1992;327(5):308–312.

    Article  Google Scholar 

  227. King JF, Grant A, Keirse MJ, Chalmers I. Beta-mimetics in preterm labour: An overview of he randomized controlled trials. Br J Obstet Gynaecol 1988;95(3):211–222.

    Article  CAS  PubMed  Google Scholar 

  228. Romero R, Sibai B, Caritis S, et al. Antibiotic treatment of preterm labor with inact membranes: A multicenter, randomized, double-blinded, placebo-controlled trial. Am J Obstet Gynecol 1993;169:764–774.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Yellon PhD.

Additional information

Supported by the Dean of the School of Medicine and the Department of Pediatrics, Loma Linda University School of Medicine, and the National Medical Testbed Program.

We thank Long Tran for exceptional technical expertise in data analysis and preparation of figures. Some experiments were performed by Laura Kirby and Luis Oceguera; their efforts and microscopic analyses provided an important contribution to this work. Thoughtful editorial critiques by Drs. Charles A. Ducsay and Lawrence D. Longo were appreciated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yellon, S.M., Mackler, A.M. & Kirby, M.A. The Role of Leukocyte Traffic and Activation in Parturition. Reprod. Sci. 10, 323–338 (2003). https://doi.org/10.1016/S1071-5576(03)00116-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-5576(03)00116-3

Key words

Navigation