Skip to main content
Log in

Use of rotating (cine) planar projection images in the interpretation of a tomographic myocardial perfusion study

  • Editorial Points of View
  • Published:
Journal of Nuclear Cardiology Aims and scope

Conclusions

The use of the rotating projection data is strongly encouraged. It is recommended that the planar image cine of all SPECT perfusion studies be reviewed on two occasions—once by the nuclear technologist immediately after the image acquisition for issues related to technical quality (ie, patient motion or excessive subdiaphragmatic activity) and again by the physician during the interpretive session1. Use of rotating projection data should increase recognition of potential artifacts and thus optimize test specificity. Therefore the number of falsepositive SPECT study results will be minimized, potentially reducing hospital costs and patient morbidity. Additionally, important noncardiac processes can be identified, providing further diagnostic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Garcia EV, editor. Imaging guidelines for nuclear cardiology procedures, Part 1. J Nucl Cardiol 1996;3:GG3–45.

    Google Scholar 

  2. Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566–71.

    PubMed  CAS  Google Scholar 

  3. DePuey E. How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 1994;35:699–702.

    PubMed  Google Scholar 

  4. DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989;30:441–9.

    PubMed  CAS  Google Scholar 

  5. Botvinick EH, Zhu YY, O'Connell WJ, Dae MW. A quantitative assessment of patient motion and its effect on myocardial perfusion SPECT images. J Nucl Med 1993;34:303–10.

    PubMed  CAS  Google Scholar 

  6. Prigent FM, Hyun M, Berman DS, Rozanski A. Effect of motion on thallium-201 SPECT studies: a simulation and clinical study. J Nucl Med 1993; 34:1845–50.

    PubMed  CAS  Google Scholar 

  7. Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J et al. “Upward creep” of the heart: a frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718–22.

    PubMed  CAS  Google Scholar 

  8. Mester J, Weller R, Clausen M, et al. Upward creep of the heart in exercise thallium-201 single photon emission computed tomography: clinical relevance and a simple correction method. Eur J Nucl Med 1991;18:184–90.

    Article  PubMed  CAS  Google Scholar 

  9. Sorrell V, Figueroa B, Hansen CL. The “hurricane sign”: evidence of patient motion artifact on cardiac single-photon emission computed tomography. J Nucl Cardiol 1996;3:86–8.

    Article  PubMed  CAS  Google Scholar 

  10. Maniawski PJ, Morgan HT, Wackers FJTh. Orbit-related variation in spatial resolution as a source of artifactural defects in thallium-201 SPECT. J Nucl Med 1991;32:871–5.

    PubMed  CAS  Google Scholar 

  11. Taillefer R, Roidoux A, Lambert R, et al. Technetium-99m sestamibi prone scintimammography to detect primary breast cancer and axillary lymph node involvement. J Nucl Med 1995;36:1758–65.

    PubMed  CAS  Google Scholar 

  12. O'Connor M, Kelly B. Evaluation of techniques for the elimination of “hot” bladder artifacts in SPECT of the pelvis. J Nucl Med 1990;31:1872–5.

    PubMed  Google Scholar 

  13. Germano G, Chua T, Kiat H, Areeda JS, Berman DS. A quantitative phantom analysis of artifacts due to hepatic activity in technetium-99m myocardial perfusion SPECT studies. J Nucl Med 1994;35:356–9.

    PubMed  CAS  Google Scholar 

  14. Lakkis NM, He ZX, Verani MS. Diagnosis of coronary artery disease by exercise thallium-201 tomography in patients with a right ventricular pacemaker. J Am Coll Cardiol 1997;29:1221–5.

    Article  PubMed  CAS  Google Scholar 

  15. Akolun C, Bayhan H, Kir M. Clinical experience with Tc-99m-MIBI imaging in patients with malignant tumor preliminary results and comparison with Tl-201. Clin Nucl Med 1992;17:171–6.

    Article  Google Scholar 

  16. Maffioli L, Steens J, Pauwels E, Bombardieri E. Applications of Tc-99m sestamibi in oncology. Tumori 1996;82:12–21.

    PubMed  CAS  Google Scholar 

  17. Lind P, Gallowitsch HJ, Langsteger W, Kresnik E, Mikosch, Gomex I. Technetium-99m-tetrofosmin whole-body scintigraphy in the follow-up of differentiated thyroid carcinoma. J Nucl Med 1997;38:348–52.

    PubMed  CAS  Google Scholar 

  18. DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995;36:952–5.

    PubMed  CAS  Google Scholar 

  19. Holly TA, Hendel RC. The prevalence of non-uniform soft tissue attenuation in myocardial SPECT perfusion imaging and the impact of gated SPECT [Abstract]. J Nucl Cardiol 1997;4:S103.

    Article  Google Scholar 

  20. Manglos S, Thomas F, Gagne G, Hellwig B. Phantom study of breast tissue attenuation in myocardial imaging. J Nucl Med 1993;34:992–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Hendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendel, R.C., Gibbons, R.J. & Bateman, T.M. Use of rotating (cine) planar projection images in the interpretation of a tomographic myocardial perfusion study. J Nucl Cardiol 6, 234–240 (1999). https://doi.org/10.1016/S1071-3581(99)90084-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(99)90084-3

Navigation