Skip to main content
Log in

Accuracy of 99mTc-tetrofosmin myocardial tomography in the evaluation of coronary artery disease

  • Original Articles
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Technetium 99m-labeled myocardial agents have been proposed as an alternative to thallium 201. The aim of this study was to assess retrospectively the accuracy of exercise myocardial 99mTc-tetrofosmin scintigraphy with tomographic imaging (SPECT) in a large group population in the evaluation of coronary artery disease. Furthermore we evaluated the relation between the severity of scintigraphic impaired myocardial perfusion and the angiographic coronary artery stenoses in patients without myocardial infarction and with stenosis localized exclusively in the proximal segment of the 3 main coronary arteries.

Methods and Results

The study group consisted of 235 consecutive patients, 204 (87%) of whom were men, with a mean age of 57±10 years, and with suspected or known coronary artery disease, who underwent 99mTc-tetrofosmin SPECT and coronary angiography. Furthermore, 61 patients in a low-likelihood group for coronary artery disease were also studied. Significant disease was defined by ≥50% luminal coronary artery stenosis in ≥1 native coronary artery or major branch or in a saphenous vein graft or arterial mammary graft. The overall sensitivity was 95%, specificity was 76%, and predictive accuracy was 95%. The normalcy rate for the lowlikelihood group was 93%. Sensitivity was 71% for the left anterior descending artery, 61% for the left circumflex artery, and 73% for the right coronary artery. Specificity was 94% for the left anterior descending artery, 96% for the left circumflex artery, and 91% for the right coronary artery. Predictive accuracy was 79% for the left anterior descending artery, 78% for the left circumflex artery, and 81% for the right coronary artery. In patients without myocardial infarction linear regression analysis between scintigraphy and angiography showed a significant correlation in patients with severe proximal coronary artery stenosis (r=0.53, P<.002), but not in those with moderate proximal stenosis (r=0.31, P=NS).

Conclusion

This study shows that 99mTc-tetrofosmin SPECT is accurate in the detection of coronary artery disease. The relation of the severity of scintigraphic impaired myocardial perfusion and angiographic coronary artery stenosis, however, may differ significantly in patients with proximal stenosis of different severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman DS. Technetium-99m myocardial perfusion imaging agents and their relations to thallium-201. Am J Cardiol 1990;66:1E-4E.

    Article  PubMed  CAS  Google Scholar 

  2. Cuocolo A, Maurea S, Pace L, Nicolai E, Nappi A, Imbriaco M, et al. Resting technetium-99m methoxyisobutylisonitrile cardiac imaging in chronic coronary artery disease: comparison with rest-redistribution thallium-201 scintigraphy. Eur J Nucl Med 1993;20:1186–92.

    Article  PubMed  CAS  Google Scholar 

  3. Cuocolo A, Soricelli A, Pace L, Nicolai E, Castelli L, Nappi A, et al. Adenosine technetium-99m-methoxy isobutyl isonitrile myocardial tomography in patients with coronary artery disease: comparison with exercise. J Nucl Med 1994;35:1110–5.

    PubMed  CAS  Google Scholar 

  4. Jain D, Wackers FJ, Mattera J, McMahon M, Sinusas AJ, Zaret BL. Biokinetics of 99m Tc-tetrofosmin, myocardial perfusion imaging agent: implication for a one-day imaging protocol. J Nucl Med 1993;34:1254–9.

    PubMed  CAS  Google Scholar 

  5. Kelly JD, Forster AM, Higley B, Archer CM, Booker FS, Canning LR, et al. Technetium-99m tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 1993;34:222–7.

    PubMed  CAS  Google Scholar 

  6. Rigo P, Leclercq B, Itti R, Lahiri A, Braat S. Technetium-99m-tetrofosmin myocardial imaging: a comparison with thallium-201 and angiography. J Nucl Med 1994;35:587–93.

    PubMed  CAS  Google Scholar 

  7. Galassi AR, Di Primo A, Privitera G, Milazzotto A, Bellanuova I, Galassi A, et al. Comparison between Tc99mtetrofosmin and Tc99mMIBI uptake measured by quantitative SPECT scintigraphy. J Nucl Cardiol 1995;2(Suppl 2):S44.

    Article  Google Scholar 

  8. Higley B, Smith FW, Smith T, Gemmell HG, Das Gupta P, Gvozdanovic DV, et al. Technetium-99m-1,2-bis [bis(2-ethoxyethyl) phosphino] ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med 1993;34:30–8.

    PubMed  CAS  Google Scholar 

  9. Tamaki N, Takahashi N, Kawamoto M, Torizuka T, Tadamura E, Yonekura Y, et al. Myocardial tomography using technetium-99m-tetrofosmin to evaluate coronary artery disease. J Nucl Med 1994;35:594–600.

    PubMed  CAS  Google Scholar 

  10. Nicolai E, Cuocolo A, Pace L, Nappi A, Sullo P, Cardei S, et al. Adenosine coronary vasodilation quantitative technetium 99m methoxy isobutyl isonitrile myocardial tomography in the identification and localization of coronary artery disease. J Nucl Cardiol 1996;3:9–17.

    Article  PubMed  CAS  Google Scholar 

  11. Cuocolo A, Nicolai E, Soricelli A, Pace L, Nappi A, Sullo P, et al. Technetium 99m-labeled tetrofosmin myocardial tomography in patients with coronary artery disease: comparison between adenosine and dynamic exercise stress testing. J Nucl Cardiol 1996;3:194–203.

    Article  PubMed  CAS  Google Scholar 

  12. Zaret BL, Rigo P, Wackers FJ, Hendel RC, Braat SH, Iskandrian AS, et al. Myocardial perfusion imaging with 99mTc tetrofosmin: comparison to 201Tl imaging and coronary angiography in a phase III multicenter trial. Circulation 1995;91:313–9.

    PubMed  CAS  Google Scholar 

  13. ACC/AHA Guidelines for Exercise Testing: Executive Summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). Circulation 1997;96:345–54.

    Google Scholar 

  14. Ellestad MH. Stress testing: principles and practice. New York: Davis; 1996:124–5.

    Google Scholar 

  15. Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 1985;26:17–26.

    PubMed  CAS  Google Scholar 

  16. Kahn JK, McGhie I, Akers MS, Sills MN, Faber TL, Kulkarni PV, et al. Quantitative rotational tomography with 201Tl and 99mTc 2-methoxy-isobutyl-isonitrile: a direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989;79:1282–93.

    PubMed  CAS  Google Scholar 

  17. Iskandrian AS, Heo J, Kong B, Lyons E, Marsch S. Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am J Cardiol 1989;64:270–5.

    Article  PubMed  CAS  Google Scholar 

  18. Chouraqui P, Maddahi J, Ostrzega E, Van Train K, Charuzi Y, Prigent F, et al. Quantitative exercise thallium-201 rotational tomography for evaluation of patients with prior myocardial infarction. Am J Cardiol 1990;66:151–7.

    Article  PubMed  CAS  Google Scholar 

  19. Marcus M, Skorton DJ, Johnson MR, Collins SM, Harrison DG, Kerber RE. Visual estimates of percent diameter coronary stenosis: a battered gold standard. J Am Coll Cardiol 1988;11:882–5.

    Article  PubMed  CAS  Google Scholar 

  20. Mahmarian JJ, Pratt CM, Boyce TM, Verani MS. The variable extent of jeopardized myocardium in patients with single vessel coronary artery disease: quantification by thallium-201 single photon emission computed tomography. J Am Coll Cardiol 1991;17:355–62.

    PubMed  CAS  Google Scholar 

  21. Wang SJ, Chen YT, Hwang CL, Lin MS, Kao CH, Yeh SH. 99mTc-sestamibi can improve the inferior attenuation of Tl-201 myocardial SPECT imaging. Int J Card Imaging 1993;9:87–92.

    Article  PubMed  CAS  Google Scholar 

  22. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary angiography. Circulation 1976;53:627–32.

    PubMed  CAS  Google Scholar 

  23. DeRouen TA, Murray JA, Owen W. Variability in the analysis of coronary angiograms. Circulation 1977;55:324–8.

    PubMed  CAS  Google Scholar 

  24. Detre K, Wrigth E, Murphy ML, Takaro T. Observer agreement in the evaluation of coronary angiograms. Circulation 1975;52:979–86.

    PubMed  CAS  Google Scholar 

  25. White CW, Wrigth CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1994;310:819–24.

    Google Scholar 

  26. Joye JD, Schulman DS, Lasorda D, Farah T, Donohue BC, Reichek N. Intracoronary Doppler guide wire versus stress single-photon emission computed tomography thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 1994;24:940–7.

    PubMed  CAS  Google Scholar 

  27. Miller DD, Donohue TJ, Younis LT, Bach RG, Aguirre FV, Wittry MD, et al. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation 1994;89:2150–60.

    PubMed  CAS  Google Scholar 

  28. Heller LI, Cates C, Popma J, Deckelbaum LI, Joye JD, Dahlberg ST, et al. Intracoronary Doppler assessment of moderate coronary artery disease: comparison with 201-Tl imaging and coronary angiography. Circulation 1997;96:484–90.

    PubMed  CAS  Google Scholar 

  29. Gordon PC, Friederich SP, Piana RN, Kugelmass AD, Leidig GA, Gibson CM, et al. Is 40% to 70% diameter narrowing at the site of previous stenting or directional coronary atherectomy clinically significant? Am J Cardiol 1994;74:26–32.

    Article  PubMed  CAS  Google Scholar 

  30. Topol EJ, Nissen SE. Our preoccupation with coronary luminology: the dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995;92:2333–42.

    PubMed  CAS  Google Scholar 

  31. Iskandrian AS, Heo J, Kong B, Lyons E. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 1989;14:1477–86.

    Article  PubMed  CAS  Google Scholar 

  32. Gould KL. How accurate is thallium exercise testing for the diagnosis of coronary artery disease? J Am Coll Cardiol 1989; 14: 1487–90.

    Article  PubMed  CAS  Google Scholar 

  33. Iskandrian AS, Heo J. Appraisal of false positive results in nuclear cardiac imaging. Am Heart J 1990;119:708–9.

    Article  PubMed  CAS  Google Scholar 

  34. Diamond GA. How accurate is SPECT thallium scintigraphy? J Am Coll Cardiol 1990;16:1017–21.

    Article  PubMed  CAS  Google Scholar 

  35. Gould KL. Agreement on the accuracy of thallium stress testing. J Am Coll Cardiol 1990;16:1022–23.

    PubMed  CAS  Google Scholar 

  36. Kiat H, Maddahi J, Roy LT, Train KV, Friedman J, Resser K, et al. Comparison of technetium 99m methoxy isobutyl isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989;117:1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azzarelli, S., Galassi, A.R., Foti, R. et al. Accuracy of 99mTc-tetrofosmin myocardial tomography in the evaluation of coronary artery disease. J Nucl Cardiol 6, 183–189 (1999). https://doi.org/10.1016/S1071-3581(99)90079-X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(99)90079-X

Key Words

Navigation