Skip to main content
Log in

Wintergreen panel summaries

  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Germano G, Erel J, Kiat H, Kavanagh PB, Berman DS. Quantitative LVEF and qualitative regional function from gated thallium-201 perfusion SPECT. J Nucl Med 1997;38:749–54.

    PubMed  CAS  Google Scholar 

  2. DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993;34:1871–6.

    PubMed  CAS  Google Scholar 

  3. Williams KA, Taillon LA. Left ventricular function in patients with coronary artery disease assessed by gated tomographic myocardial perfusion images: comparison with assessment by contrast ventriculography and first-pass radionuclide angiography. J Am Coll Cardiol 1996;27:173–81.

    Article  PubMed  CAS  Google Scholar 

  4. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–47.

    PubMed  CAS  Google Scholar 

  5. Smith WH, Kastner RJ, Calnon DA, Segalla D, Beller GA, Watson DD. Quantitative gated single photon emission computed tomography imaging: a counts-based method for display and measurement of regional and global ventricular systolic function. J Nucl Cardiol 1997;4:451–63.

    Article  PubMed  CAS  Google Scholar 

  6. Corbett J. Gated blood-pool SPECT. In: EG DePuey, Berman DS, Garcia EV, eds. Cardiac SPECT imaging. New York: Raven Press; 1995:257–73.

    Google Scholar 

  7. Gullberg GT. Innovative design concepts for transmission CT in attenuation corrected SPECT imaging. J Nucl Med 1998;39:1344–7.

    PubMed  CAS  Google Scholar 

  8. King MA, Xia W, deVries DH, et al. A Monte Carlo investigation of artifacts caused by liver uptake in single-photon emission computed tomography perfusion imaging with technetium 99m-labeled agents. J Nucl Cardiol 1996;3:18–29.

    Article  PubMed  CAS  Google Scholar 

  9. King MA, Tsui BM, Pan TS, Glick SJ, Soares EJ. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: part2—attenuation compensation algorithms. J Nucl Cardiol 1996;3:55–64.

    Article  PubMed  CAS  Google Scholar 

  10. Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography. Circulation 1996;93:463–73.

    PubMed  CAS  Google Scholar 

  11. Bax JJ, et al. Comparision of myocardial uptake of fluorine-18-fluorodeoxyglucose imaged with PET and SPECT in dyssynergic myocardium. J Nucl Med 1996;37:1631.

    PubMed  CAS  Google Scholar 

  12. Burt RW, et al. Direct comparison of fluorine-18-Fdg Spect, fluorine-18-Fdg PET and rest Tl-201 SPECT for detection of myocardial viability. J Nucl Med 1995;36:176.

    PubMed  CAS  Google Scholar 

  13. Delbeke D, et al. Rest myocardial perfusion/metabolism imaging using simultaneous dual-isotope acquisition SPECT with technetium-99m-mibi/fluorine-18-FDG. J Nucl Med 1995;36:2110.

    PubMed  CAS  Google Scholar 

  14. Sandler MP, Patton JA. Fluorine 18-labeled fluorodeoxyglucose myocardial single-photon emission computed tomography: an alternative for determining myocardiacl viability. J Nucl Cardiol 1996;3:342.

    Article  PubMed  CAS  Google Scholar 

  15. Srinivasan G, et al. [F-18]fluorodeoxyglucose single photon emission computed tomography—can it replace PET and thallium SPECT for the assessment of myocardial tomography? Circulation 1998;97:843.

    PubMed  CAS  Google Scholar 

  16. Valkema R, et al. Evaluation of myocardial viability using dual isotope simultaneous acquisition (DISA) with Tc-99m-tetrofosmin and 18-FDG and a three-head SPECT camera. J Nucl Med 1996;37:231.

    Google Scholar 

  17. TMG Technology Marketing Group, 1996 Nuclear Medicine Database Summary Report Analysis.

  18. Field M. Division of Health Care Services, Institute of Medicine. Telemedicine: a guide to assessing telecommunications in healthcare. Washington DC: National Academy Press; 1996.

    Google Scholar 

  19. Cradduck TD, Bailey DL, Hutton BF, Deconinck F, Buseman SE, Bergmann H, et al. A standard protocol for the exchange of nuclear medicine image files. Nucl Med Comm 1989;10:703–13.

    Article  CAS  Google Scholar 

  20. Glowniak J. History, structure and function of the Internet. Semin Nucl Med 1998;28:135–44.

    Article  PubMed  CAS  Google Scholar 

References

  1. Dae M, DeMarco T, Botvinick E, O'Connell J, Hattner R, Huberty J, et al. Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts—implications for clinical studies. J Nucl Med 1992;33:1444–50.

    PubMed  CAS  Google Scholar 

  2. Merlet P, Valette H, Dubois R, Moyse D, Duboc A, Dove P, et al. Prognostic valve of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33:471–7.

    PubMed  CAS  Google Scholar 

  3. Suwa M, Otake Y, Moriguchi A, Ito T, Hirota Y, Kawamura K, et al. Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 1997;133:353–8.

    Article  PubMed  CAS  Google Scholar 

  4. Mitrani R, Klein L, Miles W, Burt R, Wellman H, Zipes D. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease. J Am Coll Cardiol 1993;22:1344–53.

    PubMed  CAS  Google Scholar 

  5. Sinusas AJ. New approaches to myocardial imaging with hypoxia markers. In: Iskandrian AS, ed. New developments in cardiac nuclear imaging. Armonk, N.Y.: Futura Publishing Company; 1998:203–18.

    Google Scholar 

  6. Ng CK, Sinusas AJ, Zaret BL, Soufer R. Kinetic analysis of technetium-99m-labeled nitroimidazole (BMS181321) as a tracer of myocardial hypoxia. Circulation 1995;92:1261–8.

    PubMed  CAS  Google Scholar 

  7. Shi CQ, Sinusas AJ, Dione DP, Singer MJ, Young LH, Heller EN, et al. Technetium-99m-nitroimidazole (BMS181321): a positive imaging agent for detecting myocardial ischemia. J Nucl Med 1995;36:1078–86.

    PubMed  CAS  Google Scholar 

  8. Okada RD, Johnson G III, Nguyen KN, Edwards B, Archer CM, Kelly JD. 99mTc-HL91. Effects of low flow and hypoxia on a new ischemiaavid myocardial imaging agent. Circulation 1997;95:1892–9.

    PubMed  CAS  Google Scholar 

  9. Nishimura T, Uehara T, Shimonagata T, Nagata S, Haze K. Clinical results with β-methyl-p-(123I)iodophenylpentadecanoic acid, singlephoton emission computer tomography in cardiac disease. J Nucl Cardiol 1994;1:S65-S71.

    Article  PubMed  CAS  Google Scholar 

  10. Iskandrian AS, Powers J, Cave V, Wasserleben V, Cassell D, Heo J. Assessment of myocardial viability by dynamic tomographic iodine 123 iodophenylpentadecanoic acid imaging: comparison with rest-redistribution thallium 201 imaging. J Nucl Cardiol 1995;2:101–9.

    PubMed  CAS  Google Scholar 

  11. Yamamichi Y, Kusuoka H, Morishita K, Shirakami Y, Kurami M, Okano K, et al. Metabolism of iodine-123-BMIPP in perfused rat hearts. J Nucl Med 1995;36:1043–50.

    PubMed  CAS  Google Scholar 

  12. Kim Y, Sawada Y, Fujiwara G, Chiba H, Nishimura T. Therapeutic effect of co-enzyme Q10 on idiopathic dilated cardiomyopathy: assessment of BMIPP myocardial single-photon emission tomography. Eur J Nucl Med 1997;24:629–34.

    PubMed  CAS  Google Scholar 

  13. Mariani G, Villa G, Rossettin PF, Motta C, Spallarossa P, Calcagno G, et al. Clinical phase I Tc-99m glucaric acid study for very early visualization of acute myocardial infarction [abstract]. J Am Coll Cardiol 1997;29:451A.

    Google Scholar 

  14. Brunelli C, Spallarossa P, Rossettin P, Villa G, Motta C, Bezante GP, et al. Early scintigraphic detection of acute myocardial infarcts in humans: a technetium-99m glucaric acid (99mTc-GA) study [abstract]. J Am Coll Cardiol 1997;29:96A.

    Google Scholar 

  15. Iskandrian AS, Verani MS. New approaches to vasodilator imaging. From: Iskandrian AS, Verani MS, eds. New developments in cardiac nuclear imaging. Armonk, N.Y.: Futura Publishing Company, 1998.

    Google Scholar 

  16. Calnon DA, Glover DK, Beller GA, Vanzetto G, Smith WH, Watson DD, et al. Effects of dobutamine stress on regional myocardial blood flow, technetium-99m sestamibi uptake, and systolic wall thickening in the presence of coronary artery stenoses: implications for pharmacologic stress testing. Circulation 1997;96:2353–60.

    PubMed  CAS  Google Scholar 

  17. Calnon DA, Ruiz M, Watson DD, Beller GA, Glover DK. Myocardial uptake of 99mTc-N-NOET during dobutamine stress in the presence of coronary artery stenoses: comparison to 201-thallium. Circulation 1997;96(Supp): I-686.

    Google Scholar 

  18. Calnon DA, Ruiz M, Vanzetto G, Watson DD, Beller GA, Glover DK. Myocardial uptake of Tc-99m sestamibi during dobutamine stress is enhanced by ruthenium red, an inhibitor of mitochondrial calcium influx. Circulation 1997;96(Supp):I-687.

    Google Scholar 

  19. Burg MM, Jain D, Soufer R, Kerns RD, Zaret BL. Role of behavioral and psychological factors in mental stress induced silent left ventricular dysfunction in coronary artery disease. J Am Coll Cardiol 1993;22:440–8.

    PubMed  CAS  Google Scholar 

  20. Yeung AC, Vekshtein VI, Krantz DS. The effect of atherosclerosis on the vasomotor response of coronary arteries to mental stress. N Engl J Med 1991;325:1551–6.

    PubMed  CAS  Google Scholar 

  21. Soufer R, Bremner JD, Arrighi JA, Cohen IS, Zaret BL, Burg MM, Goldman-Rakic P. Cerebral cortical hyperactivation in response to mental stress in patients with coronary artery disease. Proc Natl Acad Sci 1998;95:6454–9.

    Article  PubMed  CAS  Google Scholar 

  22. Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography: diagnostic accuracy of attenuation-corrected 99mTc-sestamibi singlephoton emission computed tomography. Circulation 1996;93:463–73.

    PubMed  CAS  Google Scholar 

  23. Kluge R, Sattler B, Seese A, Knapp WH. Attenuation correction by simultaneous emission-transmission myocardial single-photon emission tomography using a technetium-99m-labeled radiotracer: impact on diagnostic accuracy. Eur J Nucl Med 1997;24:1107–14.

    PubMed  CAS  Google Scholar 

  24. He ZX, Lakkis NM, America Y, Groot D, Ahmad A, Badruddin SM, et al. Qualitative and quantitative comparison of sestamibi SPECT without and with attenuation correction for detection of coronary artery disease in patients with large body habitus [abstract]. J Am Coll Cardiol 1997;29:302A.

    Google Scholar 

  25. Duvernoy C, Ficaro E, Karabajakian M, Rose P, Corbett J. Left main coronary disease: increased sensitivity with quantitative attenuation corrected SPECT perfusion imaging [abstract].. J Am Coll Cardiol 1997;29:302A.

    Google Scholar 

  26. Gerson MC, Millard RW, Roszell NJ, McGoron AJ, Gabel M, Washburn LC, et al. Kinetic properties of 99mTc-Q12 in canine myocardium. Circulation 1994;89:1291–300.

    PubMed  CAS  Google Scholar 

  27. Hendel RC, Verani MS, Miller DD, Wackers FJTh, McMahon M, Cerqueira MD, et al. Diagnostic utility of tomographic myocardial perfusion imaging with technetium 99m furiformin (Q12) compared with thallium 201: results of a phase III multicenter trial. J Nucl Cardiol 1996;3:291–300.

    Article  PubMed  CAS  Google Scholar 

  28. Kumar A, McGoron AJ, Biniakiewicz DS, Kennedy SC, Millard RW, Walsh RA, et al. Uptake of novel 99m Tc-Q compounds in laminin attached adult rat cardiac myocytes [abstract]. J Nucl Med 1998;39:216P.

    Google Scholar 

  29. Meleca MJ, McGoron AJ, Gerson MC, Millard RW, Gabel M, Biniakiewicz D, et al. Flow versus uptake comparisons of thallium-201 with six technetium-99m perfusion tracers in a canine model of myocardial ischemia. J Nucl Med 1997;38:1847–56.

    PubMed  CAS  Google Scholar 

  30. Johnson G, Allton I, Nguyen KN, Lauinger JM, Beju D, Pasqualini R, et al. Clearance of technetium 99m N-NOET in normal, ischemic-reperfused, and membrane disrupted myocardium. J Nucl Cardiol 1996;3:42–54.

    Article  PubMed  Google Scholar 

  31. Johnson G, Nguyen KN, Pasqualini R, Okada R. Interaction of 99m TcN-NOET with blood elements: a potential mechanism of myocardial redistribution. J Nucl Cardiol 1997;38:138–43.

    CAS  Google Scholar 

  32. Johnson G, Nguyen KN, Liu Z, Gao P, Pasqualini R, Okada R. Planar imaging of 99mTc-labeled (bis(N-ethoxy, N-ethyl dithiocarbamato) nitrido technetium (V)) can detect resting ischemia. J Nuclear Cardiol 1997;4:217–25.

    Article  Google Scholar 

  33. Vanzetto G, Calnon D, Ruiz M, Watson D, Pasqualini R, Beller G, et al. Myocardial uptake and redistribution of 99m TcN-NOET in dogs with either sustained coronary low flow or transient coronary occlusion. Circulation 1997;96:2325–31.

    PubMed  CAS  Google Scholar 

References

  1. Brown KA, Boucher CA, Okada RD, Guiney TE, Newel JB, Strauss W. Prognostic value of exercise thallium-201 imaging in patients presenting for evaluation of chest pain. J Am Coll Cardiol 1983;1:994–1001.

    PubMed  CAS  Google Scholar 

  2. Ladenheim ML, Pollock BH, Rozanski A, Berman DS, Staniloff HM, Forrester JS, et al. Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol 1986;7:464–71.

    PubMed  CAS  Google Scholar 

  3. Staniloff H, Forester JS, Berman DS, Swan HJC. Prediction of death, myocardial infarction and worsening chest pain using thallium scintigraphy and exercise electrocardiography. J Nucl Med 1986;27:1842–8.

    PubMed  CAS  Google Scholar 

  4. Ladenheim ML, Kotler TS, Pollock BH, Berman DS, Diamond GA. Incremental prognostic power of clinical history, exercise electrocardiography and myocardial perfusion scintigraphy in suspected coronary artery disease. Am J Cardiol 1987;59:270–7.

    Article  PubMed  CAS  Google Scholar 

  5. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT I patients without known coronary artery disease: incremental prognostic value and impact on subsequent patient management. Circulation 1996;93:905–14.

    PubMed  CAS  Google Scholar 

  6. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. The prediction of myocardial infarction versus cardiac death by myocardial perfusion SPECT: strategic and therapeutic implications. Circulation 1998;97:535–43.

    PubMed  CAS  Google Scholar 

  7. Shaw LJ, Miller DD, Romeis, JC, Younis LT, Gillespie KN, Kimmey JR, et al. Prognostic value of noninvasive risk stratification in younge and older patients referred for evaluation of suspected coronary artery disease. J Am Ger Soc 1996;44:1190–7.

    CAS  Google Scholar 

  8. Berman DS, Hachamovitch R, Shaw L, Lewin HC, Iskandrian AE, Bateman T. Prognostic risk stratification with SPECT imaging: results from a 20,340 patient registry. J Am Coll Cardiol 1998;31:41A.

    Google Scholar 

  9. Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 1998;32:57–62.

    Article  PubMed  CAS  Google Scholar 

  10. Hachamovitch R, Berman D, Kiat H, Cohen I, Cabico A, Diamond G. What is the warranty period for a normal exercise sestamibi SPECT. Circulation 1995;92:I-522.

    Google Scholar 

  11. Brown KA. Prognostic value of thallium-201 perfusion imaging: a diagnostic tool comes of age. Circulation 1991;83:363–70.

    PubMed  CAS  Google Scholar 

  12. Brown KA, Rowen M. Prognostic value of a normal exercise myocardial perfusion imaging study in patients with angiographically significant coronary artery disease. Am J Cardiol 1993;7:865–7.

    Article  Google Scholar 

  13. Abdel-Farrah A, Kamal AM, Pancholy S, et al. Prognostic implications of normal exercise tomographic thallium images in patients with angiographic evidence of significant coronary artery disease. Am J Cardiol 1994;74:769–71.

    Article  Google Scholar 

  14. Pamelia FX, Gibson RS, Watson DD, et al. Prognosis with chest pains and normal thallium-201 exercise scintigrams Am J Cardiol 1985;55:920–6.

    Article  PubMed  CAS  Google Scholar 

  15. Younis LT, Byers S, Shaw L, et al. Prognostic importance of silent myocardial ischemia detected by intravenous dipyridamole-thallium myocardial imaging in asymptotic patients with coronary artery disease. J Am Coll Cardiol 1989;14:1635–41.

    PubMed  CAS  Google Scholar 

  16. Pavin D, Delonca J, Siegenthaler N, et al. Long-term (10 years) prognostic value of a normal thallium-201 myocardial exercise scintigraphy in patients with coronary artery disease documented by angiography. Eur Heart J 1997;18:69–77.

    PubMed  CAS  Google Scholar 

  17. Parisi AS, Hartigan PM, Folland SD, et al. Evaluation of exercise thallium scintigraphy versus exercise electrocardiography in predicting survival outcomes and morbid cardiac events in patients with single and double-vessel disease. J Am Coll Cardiol 1997;30:1256–63.

    Article  PubMed  CAS  Google Scholar 

  18. Iskandrian A, Chae S, Heo J, et al. Independent and incremental prognostic value of exercise single photon emission computed tomography (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993;22:665–70.

    PubMed  CAS  Google Scholar 

  19. Bonow RO, Kent KM, Rosnig DR, et al. Exercise-induced ischemia in mildly symptomatic patients with coronary artery disease and preserved left ventricular function. N Engl J Med 1984;311:1339–45.

    PubMed  CAS  Google Scholar 

  20. Weinger DA, Ryan TJ, McCabe CH, et al. Value of exercise in determine the risk classification and the response to coronary artery bypass grafting in 3-vessel coronary artery disease: a report from the Coronary Artery Surgery Study (CASS Registry). Am J Cardiol 1987;60:262–6.

    Article  Google Scholar 

  21. Gibbons RJ, Zinsmeister AR, Miller TD, Clements IP. Supine exercise electrocardiography compared, with exercise radionuclide angiography in non-invasive identification of severe coronary artery disease. Ann Intern Med 1990;112:743–9.

    PubMed  CAS  Google Scholar 

  22. Jones RH, Floyd RD, Austin EH, Sabiston DC. The role of radionuclide angiography in the preoperative prediction of pain relief and prolonged survival following coronary artery bypass grafting. Ann Surg 1983;197:743–53.

    PubMed  CAS  Google Scholar 

  23. Mishra JP, Iskandrian AE. Stress myocardial perfusion imaging after coronary angioplasty. Am J Cardiol 1998;81:766–9.

    Article  PubMed  CAS  Google Scholar 

  24. Iskandrian AS, Verani MS. Nuclear cardiac imaging: principles and applications 2nd ed. Philadelphia: FA Davis Publishing Co.; 1996.

    Google Scholar 

  25. Nallamothu N, Johnson JH, Bagheri B, Heo J, Iskandrian AE. Utility of stress single photon emission computed tomography (SPECT) perfusion imaging in predicting outcome after coronary artery bypass grafting. Am J Cardiol 1997;80:1517–21.

    Article  PubMed  CAS  Google Scholar 

  26. Palmas W, Bingham S, Diamond GA, et al. Incremental prognostic value of exercise thallium-201 myocardial single photon emission computed tomography late after coronary artery bypass surgery. J Am Coll Cardiol 1995;25:403–9.

    Article  PubMed  CAS  Google Scholar 

  27. Lauer MS, Lytle B, Pashkow F, Snader CE, Marwick TH. Prediction of death and myocardial infarction by screening with exercise-thallium testing after coronary artery bypass grafting. Lancet 1998;31:615–22.

    Article  Google Scholar 

  28. Miller TC, Christian TF, Hodge DO, Mullan BP, Gibbons RJ. Prognostic value of exercise thallium-201 imaging within 2 years of coronary artery bypass graft surgery. J Am Coll Cardiol 1998;31:848–54.

    Article  PubMed  CAS  Google Scholar 

  29. Eagle KA, Brundage BH, Chairman BR, Ewy GA, Fleisher LA, Hertzer NR, et al. Guidelines for perioperative cardiovascular evaluation for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). J Am Coll Cardiol 1996;27:910–48.

    Article  PubMed  CAS  Google Scholar 

  30. Womble JR, Larson DF, Copeland JG, Russell DG. Urinary polyamine levels are markers of altered T lymphocyte proliferation/loss and rejection in heart transplant patients. Transplant Proc 1984;16:15735.

    Google Scholar 

  31. Cartier M, Russell DH, Davis TP, Emery RW, Copeland JG. Urinary polyamines as markers of cardiac allograft rejection: a clinical evaluation. J Thorac Cardiovasc Surg 1988;96:806–10.

    Google Scholar 

  32. Carder M, Russell DH, Wild JC, Emery RW, Copeland, JG. Prolactin as a marker of rejection in human heart transplantation. J Heart Transplant 1987;6:290–2.

    Google Scholar 

  33. Roodman ST, Miller LW, Tsai CC. Role of interleukin 2 reporters in immunologic monitoring after heart and heart-lung transplantation. Transplantation 1988;45:1050–6.

    Article  PubMed  CAS  Google Scholar 

  34. Ballester M, Obrador D, Cardo I, et al. Early post-operative reduction of monoclonal antimyosin antibody uptake is associated with absent rejection-related complications after heart transplantation. Circulation 1992;85:61–8.

    PubMed  CAS  Google Scholar 

  35. Ballester M, Obrador D, Cardo I, et al. Indium 11-monoclonal antimyosin antibody studies after the first year, of heart transplantation: identification of risk groups for developing rejection during long-term follow-up and clinical implications. Circulation 1990;82:2100–8.

    PubMed  CAS  Google Scholar 

  36. Hesse B, Mortensen SA, Folke M, et al. Ability of antimyosin scintigraphy monitoring to exclude acute rejection during the first year after heart transplantation. J Heart Lung Transplant 1995;14:23–31.

    PubMed  CAS  Google Scholar 

  37. Bocchi EA, Mocelin AO, de Moraes AV, et al. Comparison between two strategies for rejection detection after heart transplantation. Routine endomyocardial biopsy versus Gallium-67 cardiac imaging. Transplant Proc 1997;29:586–8.

    Article  PubMed  CAS  Google Scholar 

  38. Dengler TJ, Zimmerman R, Braun K, et al. Elevated serum concentrations of cardiac troponin T in acute allograft rejection after human heart transplantation. J Am Coll Cardiol 1998;32:405–12.

    Article  PubMed  CAS  Google Scholar 

  39. Wisenberg G, Pflugfelder PW, Kostuk WJ, McKenie FN, Prato FS. Diagnostic applicability of magnetic resonance imaging in assessing human cardiac allograft rejection. Am J Cardiol 1987;60:130–6.

    Article  PubMed  CAS  Google Scholar 

  40. Lieback E, Meyer R, Nawrocki M, Bellach J, Hetzer R. Noninvasive diagnosis of cardiac rejection through echocardiographic tissue characterization. Ann Thorac Surg 1994;57:1164–70.

    Article  PubMed  CAS  Google Scholar 

  41. Angermann CE, Nassau K, Stempfle HU, et al. Recognition of acute cardiac allograft rejection from serial integrated backscatter analyses in human orthotopic heart transplant recipients: comparison, with conventional echocardiography. Circulation 1997;95:140–50.

    PubMed  CAS  Google Scholar 

  42. Valentine HA, Fowler MB, Hunt SA, et al. Changes in Doppler echocardiographic indexes of left ventricular function as potential markers of acute cardiac rejection. Circulation 1987;76[Suppl V]:V86-V92.

    Google Scholar 

  43. Tatum JL, Thompson JA, Prasad U, Burke TS, Quint RI. Radionuclide detection of abnormal ventricular filling patterns in rejecting human allografts. Clin Nucl Med 1989;14:175–8.

    Article  PubMed  CAS  Google Scholar 

  44. Latre JM, Arizon JM, Jimenez-Heffeman A, et al. Noninvasive radioisotopic diagnosis of acute, heart rejection. J Heart Lung Transplant 1992;11:453–7.

    PubMed  CAS  Google Scholar 

  45. Johnson DE, Gao SZ, Schroeder JS, DeCampli WM, Billingham ME. The spectrum of coronary artery pathologic findings in human cardiac allografts. J Heart Transplant 1989;8:349–59.

    PubMed  CAS  Google Scholar 

  46. Smart FW, Ballantyne CM, Cocanougher B, et al. Insensitivity of noninvasive tests to detect coronary artery vasculopathy after heart transplant. Am J Cardiol 1991;67:243–7.

    Article  PubMed  CAS  Google Scholar 

  47. Redonnet M, Derumeaux G, Mouton-Schleifer DM, et al. Noninvasive detection of cardiac graft vascular disease. Transplant Proc 1995;27:2530–1.

    PubMed  CAS  Google Scholar 

  48. Lamich R, Ballester M, Marti V, et al. Efficacy of augmented immunosuppressive therapy for early vasculopathy in heart transplantation. J Am Coll Cardiol 1998;32:413–9.

    Article  PubMed  CAS  Google Scholar 

  49. Ritfkin RD, Hood WB Jr. Bayesian analyses of electrocardiographic exercise stress testing. N Engl J Med 1977;297:681–6.

    Google Scholar 

  50. Bruce RA, De Rouen TA, Hossack KF. Value of maximal exercise tests in risk assessment of primary coronary heart disease events in healthy men. Am J Cardiol 1980;46:371–8.

    Article  PubMed  CAS  Google Scholar 

  51. Froelicher VF, Maron D. Exercise testing and ancillary techniques to screen for coronary heart disease. Prog Cardiovasc Dis 1981;24:261–74.

    Article  PubMed  CAS  Google Scholar 

  52. Patterson RE, Horowitz SF, Eng C, Rudin A, Meller J, Halgash DA, et al. Can exercise electrocardiography and thallium-201 myocardial imaging exclude the diagnosis of coronary artery disease? Am J Cardiol 1982;49:1127–35.

    Article  PubMed  CAS  Google Scholar 

  53. Froelicher VF. Special applications: screening apparently health individuals. In: Froelicher VF, ed. Munual of exercise testing. 2nd ed. St. Louis: Mosby; 1994:160–76.

    Google Scholar 

  54. Froelicher VF, Thompson AJ, Wolthuis R, Fuchs R, Balusek R, Longo MR Jr, et al. Angiographic findings in asymptomatic aircrewmen with electrocardiographic abnormalities. Am J Cardiol 1997;39:32–9.

    Article  Google Scholar 

  55. Borer JS, Brensike JF, Redwood DR, Itscoitz SB, Passamani ER, Stone NJ, et al. Limitations of the electrocardiographic response to exercise in predicting coronary artery disease. N Engl J Med 1975;29:367–71.

    Article  Google Scholar 

  56. Uhl GS, et al. Predictive implications of clinical and exercise variables in detecting significant coronary artery disease in asymptomatic users. J Cardiac Rehab 1984;4:245–52.

    Google Scholar 

  57. Caralis DG, Bailey I, Kennedy HL, Pitt B. Thallium-201 myocardial imaging in evaluation of asymptomatic individuals with ischemic ST segment depression on exercise electrocardiogram. Br Heart J 1979;42:562–7.

    Article  PubMed  CAS  Google Scholar 

  58. Uhl GS, Kay TN, Hickman JR Jr. Computer-enhanced thallium scintigrams in asymptomatic men with abnormal exercise tests. Am J Cardiol 1981;48:1037–43.

    Article  PubMed  CAS  Google Scholar 

  59. Fleg JL, Gerstenblith G, Zonderman AB, Becker LC, Weisfeldt ML, Costa PT Jr. et al. Prevalence and prognostic significance of exercise-induced silent myocardial ischemia detected by thallium scintigraphy and electrocardiography in asymptomatic volunteers. Circulation 1990;81:428–36.

    PubMed  CAS  Google Scholar 

  60. Schwartz RS, Jackson WG, Celio PV, Richardson LA, Hickman JR Jr. Accuracy of exercise 201T1 myocardial scintigraphy in asymptomatic young men. Circulation 1993;87:165–72.

    PubMed  CAS  Google Scholar 

  61. Blumenthal RS, Becker DM, Moy TF, Coresh J, Wilder LB, Becker LC. Exercise thallium tomography predicts future clinically manifest coronary heart disease in a high-risk asymptomatic population. Circulation 1996;93:915–23.

    PubMed  CAS  Google Scholar 

  62. Rozanski A. Referral bias and the efficacy of radionuclide stress tests: Problems and solutions. J Nucl Med 1992;33:2074–9.

    PubMed  CAS  Google Scholar 

  63. Naka M, Hiramatsu K, Aizawa T, Momose A, Yoshizawa K, Shigematsu S, et al. Silent myocardial ischemia in patients with noninsulin-dependent diabetes mellitus as judged by treadmill exercise testing and coronary angiography. Am Heart J 1992;123:46–53.

    Article  PubMed  CAS  Google Scholar 

  64. Gerson MC, Khoury JC, Hertzberg VS, Fischer EE, Scott RC. Prediction of coronary artery disease in a population of insulin-requiring diabetic patients: results of an 8-year follow-up study. Am Heart J 1988;116:820–6.

    Article  PubMed  CAS  Google Scholar 

  65. Koistinen MJ, Huikuri HV, Pirttiaho H, Linnaluoto MK, Takkunen JT. Evaluation of exercise electrocardiography and thallium tomographic imaging in detecting asymptomatic coronary artery disease in diabetic patients. Br Heart J 1990;63:7–11.

    Article  PubMed  CAS  Google Scholar 

  66. Uhl GS, Froelicher V. Screening for asymptomatic coronary artery disease. J Am Coll Cardiol 1983;1:946–55.

    Article  PubMed  CAS  Google Scholar 

  67. Schulman DS, Francis CK, Black HR, Wackers FJT. Thallium-201 stress imaging in hypertensive patients. Hypertension 1987;10:16–21.

    PubMed  CAS  Google Scholar 

  68. DePuey EG, Guertler-Krawczynska E, Perkins JV, Robbins W, Whelchel JD, Clements SD. Alterations in myocardial thallium-201 distribution in patients with chronic systemic hypertension undergoing single-photon emission computed tomography. Am J Cardiol 1988;62:234–8.

    Article  PubMed  CAS  Google Scholar 

  69. Massie BM, Szlachcic Y, Tubau J, O'Kelly BF, Ammon S, Chin W. Scinitigraphic and electrocardiographic evidence of silent coronary artery disease in asymptomatic hypertension: a case-control study. J Am Coll Cardiol 1993;22:1598–606.

    Article  PubMed  CAS  Google Scholar 

  70. Grogan M, Christian TF, Milletr TD, Bailey KR, Gibbon RJ. The effect of systemic hypertension on exercise tomographic thallium-201 imaging in the absence of electrocardiographic left ventricular hypertrophy Am Heart J 1993;126:327–32.

    Article  PubMed  CAS  Google Scholar 

  71. Vadugananthan P, He Z-X, Mahmarian JJ, Verani MS. Diagnostic accuracy of stress thallium-201 tomography in patients with left ventricular hypertrophy. Am J Cardiol 1998;81:1205–7.

    Article  Google Scholar 

  72. Gordon JB, Ganz P, Nabel EG, Fish RD, Zebede J, Mudge GH, et al. Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. J Clin Invest 1989;83:1946–52.

    Article  PubMed  CAS  Google Scholar 

  73. Nabel EG, Selwyn AP, Gnz P. Paradoxical narrowing of atherosclerotic coronary arteries induced by increases in heart rate. Circulation 1990;81:850–9.

    PubMed  CAS  Google Scholar 

  74. Vita JA, Treasure CB, Yeung AC, Vekshtein VI, Fantasia GM, Fish RD, et al. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation 1992;85:1390–7.

    PubMed  CAS  Google Scholar 

  75. Little WC, Constaintinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988;78:1157–66.

    PubMed  CAS  Google Scholar 

  76. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992;326:242–50, 310–8.

    PubMed  CAS  Google Scholar 

  77. Meleca MJ, McGoron AJ, Gerson MC, Millard RW, Gabel M, Biniakiewicz D, Roszell NJ, Walsh RA. Flow versus uptake comparisons of thallium-201 with technetium-99m perfusion tracers in a canine model of myocardial ischemia. J Nucl Med 1997;38:1847–56.

    PubMed  CAS  Google Scholar 

References

  1. Wackers FJ, Lie KI, Liem KL, et al. Potential value of thallium-201 scintigraphy as a means of selecting patients for the coronary care unit. Br Heart J 1979;41:111–7.

    Article  PubMed  CAS  Google Scholar 

  2. Varetto T, Cantalupi D, Altieri A, Orlandi C. Emergency room technetium-99m sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiograms. J Am Coll Cardiol 1993;22:1804–8.

    Article  PubMed  CAS  Google Scholar 

  3. Hilton TC, Thompson RC, Williams HJ, Saylors R, Fulmer H, Stowers SA. Technetium-99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J Am Coll Cardiol 1994;23:1016–22.

    Article  PubMed  CAS  Google Scholar 

  4. Tatum JL, Jesse RL, Kontos MC, et al. A comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 1997;29:116–25.

    Article  PubMed  CAS  Google Scholar 

  5. Heller GV, Stowers SA, Hendel RC, et al. Clinical value of acute rest Technetium-99m Tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol 1998;31:1011–7.

    Article  PubMed  CAS  Google Scholar 

  6. Reimer KA, Jennings RB, Cobb FR, Murdock RH, Greenfield JC Jr, Becker KC, et al. Animal models for protecting ischemic myocardium: results of the NHLBI cooperative study. Comparison of unconscious and conscious dog models. Circ Res 1985;56:651–65.

    PubMed  CAS  Google Scholar 

  7. Gibbons RJ, Christian TF, Hopfenspirger M, Hodge DO, Bailey KR. Myocardium at risk and infarct size after thrombolytic therapy for acute myocardial infarction: implications for the design of randomized trials of acute intervention. J Am Coll Cardiol 1994;24:616–23.

    Article  PubMed  CAS  Google Scholar 

  8. Gibbons RJ, Holmes DR, Reeder GS, Bailey KR, Hopfenspirger MR, Gersh BJ. Immediate angioplasty compared with the administration of a thrombolytic agent followed by conservative treatment for myocardial infarction. N Engl J Med 1993;328:685–91.

    Article  PubMed  CAS  Google Scholar 

  9. Christian TF, Schwartz RS, Gibbons RJ. Determinants of infarct size in reperfusion therapy for acute myocardial infarction. Circulation 1992;86:81–90.

    PubMed  CAS  Google Scholar 

  10. Christian TF, Clements IP, Gibbons RJ. Noninvasive identification of myocardium at risk in patients with acute myocardial infarction and nondiagnostic electrocardiograms with Technetium-99m sestamibi. Circulation 1991;83:1615–20.

    PubMed  CAS  Google Scholar 

  11. Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ, Gibbons RJ. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation 1995;92:334–41.

    PubMed  CAS  Google Scholar 

  12. Ryan TJ, Anderson JL, Antman EM, et al. ACC/AHA guidelines for the management of patients with acute myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). J Am Coll Cardiol 1996;28:1328–48.

    Article  PubMed  CAS  Google Scholar 

  13. Brown KA. Prognostic value of myocardial perfusion imaging: state of the art and new developments. J Nucl Cardiol 1996;3:516–37.

    Article  PubMed  CAS  Google Scholar 

  14. Travin MI, Dessouki AMR, Cameron T, Heller GV. Use of exercise technetium-99m sestamibi SPECT imaging to detect residual ischemia and for risk stratification after acute myocardial infarction. Am J Cardiol 1995;75:665–9.

    Article  PubMed  CAS  Google Scholar 

  15. Dakik HA, Mahmarian JJ, Kimball KT, Koutelou MG, Medrano R. Verani MS. Prognostic value of exercise Tl-201 tomography in patients treated with thrombolytic therapy during acute myocardial infarction. Circulation 1996;94:2735–42.

    PubMed  CAS  Google Scholar 

  16. Mahmarian JJ, Mahmarian AC, Marks GF, Pratt CM, Verani MS. Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol 1995;25:1333–40.

    Article  PubMed  CAS  Google Scholar 

  17. Zaret BL, Wackers FJ, Terrin ML, Forman SA, Williams DO, Knatterud GL, Braunwald E, for The TIMI Study Group. Value of radionuclide rest and exercise left ventricular ejection fraction in assessing survival of patients after thrombolytic therapy for acute myocardial infarction: results of thrombolysis in myocardial infarction (TIMI) Phase II Study. J Am Coll Cardiol 1995;26:73–79.

    Article  PubMed  CAS  Google Scholar 

  18. Boden WE. Outcomes in patients with acute non-Q-wave myocardial infarction randomly assigned to an invasive as compared with a conservative management strategy: Veterans Affairs Non-Q-Wave Infarction Strategies in Hospital (VANQWISH) Trial investigators. N Engl J Med 1998;338:1785–92.

    Article  PubMed  CAS  Google Scholar 

  19. The TIMI IIIB Investigators. Effects of tissue plasminogen activator and a comparison of early invasive and conservative strategies in unstable angina and non-Q-wave myocardial infarction: results of the TIMI IIIB trial. Circulation 1994;89:1545–56.

    Google Scholar 

  20. Theroux P, Waters D, Qiu S, McCans J, de Guise P, Juneau M. Aspirin versus heparin to prevent myocardial infarction during the acute phase of unstable angina. Circulation 1993;88:2045–8.

    PubMed  CAS  Google Scholar 

  21. Holland Interuniversity Nifedipine/Metoprolol Trial (HINT) Research Group. Early treatment of unstable angina in the coronary care unit: a randomized double-blind, placebo controlled comparison of recurrent ischemia in patients treated with nifedipine or metoprolol or both. Br Heart J 1986;56:400–13.

    Article  Google Scholar 

  22. Grambo DW, Topol EJ. Effect of maximal medical therapy on refractoriness of unstable angina pectoris. Am J Cardiol 1992;70:577–81.

    Article  Google Scholar 

  23. Brown KA. Prognostic value of thallium 201 myocardial perfusion imaging in patients with unstable angina who respond to medical treatment. J Am Coll Cardiol 1991;17:1053–7.

    Article  PubMed  CAS  Google Scholar 

  24. Stratmann HG, Younis LT, Wittry MD, Amato M, Miller DD. Exercise technetium-99m myocardial tomography for the risk stratification of men with medically treated unstable angina pectoris. Am J Cardiol 1995;76:236–40.

    Article  PubMed  CAS  Google Scholar 

  25. Fetters JK, Peterson ED, Shaw LJ, Newby LK, Califf RM. Sex-specific differences in coronary artery disease risk factors, evaluation, and treatment: have they been adequately evaluated? Am Heart J 1996;131:796–813.

    Article  PubMed  CAS  Google Scholar 

  26. Vaccarino V, Krumholz HM, Berkman LF, Horwitz RI. Sex differences in mortality after myocardial infarction—is there evidence for an increased risk for women? Circulation 1995;91:1861–71.

    PubMed  CAS  Google Scholar 

  27. Basu S, Senior R, Dore C, Lahiri A. Value of thallium-201 imaging in detecting adverse cardiac events after myocardial infarction and thrombolysis: a follow up of 100 consecutive patients. Br Med J 1996;313:844–8.

    CAS  Google Scholar 

  28. White HD, Norris RM, Brown MA, Brandt PWT, Witlock RML, Wild CJ. LVESV as the major determinant of survival after recovery from MI. Circulation 1987;76:44–51.

    PubMed  CAS  Google Scholar 

  29. Carlos ME, Smart SC, Wynsen JC, Sagar KB. Dobutamine stress echo for risk stratification after MI. Circulation 1997;95:1402–10.

    PubMed  CAS  Google Scholar 

  30. Pennell DJ, Underwood R, Manzara C, et al. Myocardial perfusion reserve: assessment with multisection quantitative, first pass MR imaging. Radiology 1997;204:373–84.

    Google Scholar 

  31. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765–72.

    PubMed  CAS  Google Scholar 

  32. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low dose dobutamine gradient echo magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose in patients with chronic coronary artery disease: a functional and morphological approach to the detection of residual myocardial viability. Circulation 1995;91:1006–15.

    PubMed  CAS  Google Scholar 

  33. Gesken G, Kramer CM, Rogers W, et al. Quantitative assessment of myocardial viability after infarction by dobutamine magnetic resonance imaging. Circulation 1998;98:217–23.

    Google Scholar 

  34. Ritchie JL, Hamilton GW, Trobaugh GB, Weaver WD, Williams DL, Cobb LA. Myocardial imaging and radionuclide angiography in survivors of sudden cardiac death due to ventricular fibrillation: preliminary report. Am J Cardiol 1997;39:852–7.

    Article  Google Scholar 

  35. Gioia G, Bagheri B, Schwartzman DS, Gallans DJ, Marchinski FE, Heo J, et al. Prediction of outcome of patients with life-threatening arrhythmias treated with automatic implantable cardioverter-defibrillators using SPECT perfusion imaging. Circulation 1997;95:390–4.

    PubMed  CAS  Google Scholar 

  36. Gradel C, Jain D, Batsford WP, Wackers FJTH, Zaret BL. Relationship of scar and ischemia to the results of programmed electrophysiological stimulation in patients with coronary artery disease. J Nucl Cardiol 1997;4:379–86.

    Article  PubMed  CAS  Google Scholar 

References

  1. MacLaren D, Gambhir S, Cherry S, Barrio J, Satyamurthy N, Toyokuni T, et al. Repetitive and non-invasive in vivo imaging of reporter gene expression using adenovirus delivered dopamine D2 receptor as a PET reporter gene and FESP as a PET reporter probe, J Nucl Med 1998;39:35P.

    Google Scholar 

  2. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126–32.

    PubMed  CAS  Google Scholar 

  3. Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–95.

    PubMed  CAS  Google Scholar 

  4. Herschman H, Sharfstein S, Gambhir S, MacLaren D, Cherry S, Srinivasan A, et al. In vivo imaging of gene expression associated with cell replication. J Nucl Med 1997;38:250P.

    Google Scholar 

  5. Gambhir S, Barrio J, Wu L, Iyer M, Namavari M, Satamurthy N, et al. Imaging of adenoviral directed herpes simplex virus type I thymidine kinase gene expression in mice with ganciclovir. J Nucl Med 1998;in press.

  6. Green L, Gambhir S, Barrio J, Bauer E, Nguyen K, Namavari M, et al. Tracer kinetic modeling of 8-[F-18]-fluoroganciclovir PET data: a new tracer for measuring reporter gene expression. J Nucl Med 1998;39:10P.

    Google Scholar 

  7. Dewanjee MK, Ghafouripour AK, Werner RK, Serafini AN, Sfakianakis GN. Development of sensitive radioiodinated anti-sense oligonucleotide probes by conjugation technique. Bioconjugate Chemistry 1991;2:195–200.

    Article  PubMed  CAS  Google Scholar 

  8. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, Dewanjee S, Serafini AN, Lopez DM, et al. Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-beating mouse model. J Nucl Med 1994;35:1054–63.

    PubMed  CAS  Google Scholar 

  9. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, Samy AT. Kinetics of hybridization of mRNA of c-myc oncogene with 111-linlabeled antisense oligodeoxynucleotide probes by high-pressure liquid chromatography. Biotechniques, 1994;16:844–6, 848, 850.

    PubMed  CAS  Google Scholar 

  10. Pan DGS, Toyokuni T, Iyer M, Acharya N., Phelps ME, Barrio J, Rapid synthesis of a 5′-fluorineated oligodeoxynucleotide: a model antisense probe for use in imaging with positron emission tomography (PET). Bioorg Med Chem Lett 1998;8:1317–20.

    Article  PubMed  CAS  Google Scholar 

  11. Morishita R, Higaki J, Tomita N, Ogihara T. Application of transcripexpression factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circulation Res 1998;82:1023–8.

    PubMed  CAS  Google Scholar 

  12. Isobe M, Narula J, Southern IF, Strauss HW, Khaw BA, Haber E. Imaging the rejecting heart: in vivo detection of major histocompatibility complex class II antigen induction. Circulation 1992;85:738–46.

    PubMed  CAS  Google Scholar 

  13. Elmaleh DR, Narula J, Babich JW, Petrov A, Fischman AJ, Khaw BA, et al. Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates. Proc. Natl Acad Sci USA 1998;95:691–5.

    Article  PubMed  CAS  Google Scholar 

  14. Strauss HW, Narula J, Khaw BA. Acute myocardial infarct imaging with Tc-99m and indium-111 antimyosin FAB. In: Khaw BA, Narula J, Strauss HW, eds. Monoclonal antibodies in cardiovascular diseases. Philadelphia: Lea & Febiger; 1994:30–40.

    Google Scholar 

  15. Khaw BA, Strauss HW, Narula J. “Magic bullets:” from muskets to smart bombs. J Nucl Med 1993;34:2264–8.

    PubMed  CAS  Google Scholar 

  16. McGhie AI, Radovancevic B, Capek P, Moore WH, Kasi L, Lamki L, et al. Major histocompatibility complex class II antigen expression in rejecting cardiac allografts: detection using in vivo imaging with radiolabeled monoclonal antibody. Circulation 1997;96:1605–11.

    PubMed  CAS  Google Scholar 

  17. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312–6.

    Article  PubMed  CAS  Google Scholar 

  18. Egert S, Nguyen N, Brosius FC III, Schwaiger M, Effects of wortmannin on insulin-and ischemia-induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovascular Research 1997;35:283–93.

    Article  PubMed  CAS  Google Scholar 

  19. Herz M, Nguyen N, Egert S, Ziegler S, Stocklin G, Schwaiger M. 1,3,4,6-tetraacetyl-2F-18 fluoro-2-deoxy-D-glucose: Biochemical and kinetic studies in the isolated rat heart. J Labelled Compounds Radiopharmaceuticals 1997;40:707–9.

    Google Scholar 

  20. Annane D, Merlet P, Radvanyi H, Mazoyer B, Eymard B, Fiorelli M, et al. Blunted coronary reserve in myotonic dystrophy: an early and generelated phenomenon. Circulation 1996;94:973–7.

    PubMed  CAS  Google Scholar 

  21. Ánnane D, Duboc D, Mazoyer B, Merlet P, Fiorelli M, Eymard B, et al. Correlation between decreased myocardial glucose phosphorylation and the DNA mutation size in myotonic dystrophy. Circulation 1994;90:2629–34.

    PubMed  Google Scholar 

  22. Mack C, Patel S, Schwarz E, Zanzonico P, Hahn R, Ilercil A, et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998;115:168–77.

    Article  PubMed  CAS  Google Scholar 

  23. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808–17.

    PubMed  CAS  Google Scholar 

  24. Pitkänen O, Raitakari O, Niinikoski H, Nuutila P, Iida H, Voipio-Pulkki L, et al. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol 1996;28:1705–11.

    Article  PubMed  Google Scholar 

  25. Yokoyama I, Momomura S, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472–7.

    Article  PubMed  CAS  Google Scholar 

  26. Campisi R, Czernin J, Scheoder H, Sayre JW, Marengo FD, Phelps ME, et al. Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 1998;98:119–25.

    PubMed  CAS  Google Scholar 

  27. Thyberg J, Hedin U, Sjeolund M, Palmberg L, Bottger BA. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 1990;10:966–90.

    PubMed  CAS  Google Scholar 

  28. Narula J, Petrov A, Bianchi C, Ditlow CC, Lister BC, Dilley J, et al. Noninvasive localization of experimental atherosclerotic lesions with mouse/human chimeric Z2D3 F ab'2 specific for the proliferating smooth muscle cells of human atheroma: imaging with conventional and negative charge-modified antibody fragments. Circulation 1995;92:474–84.

    PubMed  CAS  Google Scholar 

  29. Green L, Gambhir S, Sfinivasan A, Namavari M, Hoh C, Cherry S, et al. Non-invasive methods for quantitating mice input functions from FDG PET images. J Nucl Med 1996;37:147P.

    Google Scholar 

  30. Morguet AJ, Chatziioannou AF, Cherry SR, Phelps ME, Schelbert HR. Quantitation of infarct size in rat myocardium using F-18 deoxyglucose and a new high-resolution microPET system. J Am Coll Cardiol 1998;31:480A.

    Article  Google Scholar 

References

  1. Elefteriades JA, Jolis G, Levi E, Mills LK, Zaret BL. Coronary artery bypass grafting in severe left ventricular dysfunction: excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol 1993;22:1411–7.

    Article  PubMed  CAS  Google Scholar 

  2. Christian TF, Miller TD, Hodge DO, Orszular TA, Gibbons RJ. An estimate of the prevalence of reversible left ventricular dysfunction in patients referred for coronary artery bypass surgery. J Nucl Cardiol 1997;4:140–6.

    Article  PubMed  CAS  Google Scholar 

  3. Kitsiou AN, Srinivasan G, Quyyumi AA, Summers RM, Bacharach SL, Dilsizian V. Stress-induced reversible and mild-to-moderate irreversible thallium defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation 1998;98:98:501–8.

    PubMed  CAS  Google Scholar 

  4. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary artery bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–41.

    PubMed  CAS  Google Scholar 

  5. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–6.

    PubMed  CAS  Google Scholar 

  6. Bartenstein P, Hasfeld M, Schober O, Matheja P, Schafers M, Budde Th, et al. Tl-201 reinjection predicts improvement of left ventricular function following revascularization. Nucl Med 1993;32:87–90.

    CAS  Google Scholar 

  7. Samady H, Elefteriades JA, McPherson CA, Wackers FJTH. Is the lack of improvement of LVEF after bypass surgery in patients with severe ischemic dysfunction associated with a poorer outcome? [abstract]. Circulation 1997;96:I-442.

    Google Scholar 

  8. Eitzman D, al-Aouar Z, Kanter HL, vom Dahl H, Kirsh M, Deeb GM, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–65.

    Article  PubMed  CAS  Google Scholar 

  9. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–33.

    Article  PubMed  Google Scholar 

  10. Lee KS, Marwick TH, Cook SA, Go RT, Fix JS, James KB, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction: relative efficacy of medical therapy and revascularization. Circulation 1994;90:2687–94.

    PubMed  CAS  Google Scholar 

  11. Gioia G, Powers J, Heo J, Iskandrian AS. Prognostic value of rest-redistribution tomographic thallium-201 imaging in ischemic cardiomyopathy. Am J Cardiol 1995;75:759–62.

    Article  PubMed  CAS  Google Scholar 

  12. Pagley PR, Beller GA, Watson DD, Gimple LW, Ragosta M. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation 1997;96:793–800.

    PubMed  CAS  Google Scholar 

  13. vom Dahl J, Altehoefer C, Sheehan FH, Buechin P, Schulz G, Schwarz ER, Koch KC, Uebis R, Messmer BJ, Buell U, Hanrath P. Effect of myocardial viability assessed by technetium-99m-sestamibi SPECT and fluorine-18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 1997;38(5):742–8.

    Google Scholar 

  14. Di Carli MF, Asgarzadie F, Schelbert HR, Brunken RC, Laks H, Phelps ME, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–44.

    PubMed  Google Scholar 

  15. Haas F, Haehnel CJ, Picker W, Nekolla S, Martinoff S, Meisner H, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30:1693–700.

    Article  PubMed  CAS  Google Scholar 

  16. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with coronary artery disease and left ventricular dysfunction: comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991;83:26–37

    PubMed  CAS  Google Scholar 

  17. Zimmermann R, Mall G, Rauch B, et al. Residual Tl-201 activity in irreversible defects as a marker of myocardial viability: clinicopathological study. Circulation 1995;91:1016–21.

    PubMed  CAS  Google Scholar 

  18. Dilsizian V, Bonow RO. Differential uptake and apparent thallium-201 “washout” after thallium reinjection: options regarding early redistribution imaging before reinjection or late redistribution imaging after reinjection. Circulation 1992;85:1032–8.

    PubMed  CAS  Google Scholar 

  19. Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 1997;30:1451–60.

    Article  PubMed  CAS  Google Scholar 

  20. Perrone-Filardi P, Pace L, Prastaro M, Squame F, Betocchi S, Soricelli A, et al. Assessment of myocardial viability in patients with chronic coronary artery disease: rest-4 hour-24 hour thallium-201 tomography vs dobutamine echocardiography. Circulation 1996;94:2712–9.

    PubMed  CAS  Google Scholar 

  21. Pace L, Perrone-Filardi P, Mainenti PP, Cuocolo A, Vezzuto P, Prastaro M, et al. Identification of viable myocardium in patients with chronic coronary artery disease using rest-redistribution thallium-201 tomography: optimal image analysis. J Nucl Med (in press).

  22. Sciagrà R, Bisi G, Santoro GM, Zerauschek F, Sestini S, Pedenovi P, et al. Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol 1997;30:384–91.

    Article  PubMed  Google Scholar 

  23. Bax JJ, Cornel JH, Visser FC. et al. Comparison of fluorine-18 FDG with rest-redistribution thallium-201 SPECT to delineate viable myocardium and predict functional recovery after revascularization. J Nucl Med 1998;39:1481–6.

    PubMed  CAS  Google Scholar 

  24. Maes A, Borgers M, Flameng W. et al. Assessment of myocardial viability in chronic coronary artery disease using technetium-99m sestamibi SPECT: correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol 1997;29:62–8.

    Article  PubMed  CAS  Google Scholar 

  25. Medrano R, Lowry R, Young J. et al. Assessment of myocardial viability with 99mTc sestamibi in patients undergoing cardiac transplantation: a scintigraphic/pathologic study. Circulation 1996;94:1010–7.

    PubMed  CAS  Google Scholar 

  26. Dakik HA, Howell JF, Lawrie GM, et al. Assessment of myocardial viability with 99mTc-sestamibi tomography before coronary artery bypass surgery. Circulation 1997;96:2892–8.

    PubMed  CAS  Google Scholar 

  27. Bonow RO. Identification of viable myocardium. Circulation 1996;94:2674–80.

    PubMed  CAS  Google Scholar 

  28. Udelson JE, Coleman PS, Metherall J, Pandian NG, Gomez AA, Griffith JL, et al. Predicting recovery of severe regional ventricular dysfunction: comparison of resting scintigraphy with thallium-201 and technetium 99m-sestamibi. Circulation 1994;89:2552–61.

    PubMed  CAS  Google Scholar 

  29. Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease: comparison of Tc99m-sestamibi with thallium reinjection and fluorodeoxyglucose. Circulation 1994;89:678–87.

    Google Scholar 

  30. Ghezzi C, Fagret D, Arvieux CC, et al. Myocardial kinetics of TcN-NOET: a neutral lipophilic complex tracer of regional myocardial blood flow. J Nucl Med 1995;36:1069–77.

    PubMed  CAS  Google Scholar 

  31. Fagret D, Marie PY, Brunotte F, et al. Myocardial perfusion imaging with technetium-99m-Tc NOET: comparison with thallium-201 and coronary angiography. J Nucl Med 1995;36:936–43.

    PubMed  CAS  Google Scholar 

  32. Naguch SF, Vaduanathan P, Ali N, Blasutein A, Verani MS, Winters WL Jr, et al. Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography. J Am Coll Cardiol 1997;29:985–93.

    Article  Google Scholar 

  33. Kaul S. Myocardial contrast echocardiography: 15 years of research and development. Circulation 1997;96:3745–60.

    PubMed  CAS  Google Scholar 

  34. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 1982;23:577–86.

    PubMed  CAS  Google Scholar 

  35. Tillisch J, Brunken R, Marshall RC, et al. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  36. Louie HW, Laks H, Milgalter E, et al. Ischemic cardiomyopathy. Criteria for myocardial revascularization and cardiac transplantation. Circulation 1991;84(suppl III):III-290–III-295.

    CAS  Google Scholar 

  37. Yamaguchi A, Ino T, Adachi H, Murata S, Kamio H, Okada M, et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy. Ann Thorac Surg 1998;65:434–8.

    Article  PubMed  CAS  Google Scholar 

  38. Duong T, Fonarow G, Laks H, Hendi P, Czernin J, Phelps M, et al. Cost effectiveness of positron emission tomography (PET) in the management of ischemic cardiomyopathy patients who are referred for cardiac transplantation [abstract]. J Am Coll Cardiol 1996;27:144A.

    Article  Google Scholar 

  39. Sandler MP, Bax JJ, Patton JA, Visser FC, Martin WH, Wijns W. Fluorine-18-fluorodeoxyglucose cardiac imaging using a modified scintillation camera: state of the art. J Nucl Med (in press).

  40. Delbeke D, Videlefsky S, Patton JA, et al. Rest myocardial perfusion/metabolism imaging using simultaneous dual-isotope acquisition SPECT with technetium-99m-MIBI/fluorine-18-FDG. J Nucl Med 1995;36:2110–9.

    PubMed  CAS  Google Scholar 

  41. Sandler MP, Videlefsky S, Delbeke D, et al. Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography. J Am Coll Cardiol 1995;26:870–8.

    Article  PubMed  CAS  Google Scholar 

  42. Bax JJ, Cornell JH, Visser FC, et al. Prediction of improvement of contractile function in patients with ischemic ventricular dysfunction after revascularization by F18-fluorodeoxyglucose SPECT. J Am Coll Cardiol 1997;39:377–84.

    Article  Google Scholar 

  43. Bax JJ, Cornell JH, Visser FC, Pioretti PM, van Lingen A, Reis AEM, et al. Prediction of recovery of myocardial dysfunction after revascularization: comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996;28:558–64.

    Article  PubMed  CAS  Google Scholar 

  44. Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V. 18F-Deoxyglucose SPECT: can it replace PET and thallium SPECT for the assessment of myocardial viability? Circulation 1998;97:843–50.

    PubMed  CAS  Google Scholar 

  45. Tamaki N, Fujibayashi Y, Magata Y, et al. Radionuclide assessment of myocardial fatty acid metabolism by PET and SPECT. J Nucl Cardiol 1995;2:256–66.

    Article  PubMed  CAS  Google Scholar 

  46. Hosokawa R, Nohara R, Fujibayashi Y, et al. Myocardial kinetics of iodine-123-BMIPP in canine myocardium after regional ischemic and reperfusion: implications for clinical SPECT. J Nucl Med 1997;38:1857–63.

    PubMed  CAS  Google Scholar 

  47. Tamaki N, Tadamura E, Kawamoto M, et al. Decreased uptake of iodinated branched fatty acid analog indicates metabolic alterations in ischemic myocardium. J Nucl Med 1995;36:1974–80.

    PubMed  CAS  Google Scholar 

  48. Sloof GV, Visser FC, Bax JJ, et al. Increased uptake of iodine-123-BMIPP in chronic ischemic heart disease: comparison with fluorine-18 FDG SPECT. J Nucl Med 1998;39:255–60.

    PubMed  CAS  Google Scholar 

  49. Franken PR, Dendale P, DeGeeter F, et al. Prediction of functional outcome after myocardial infarction using BMIPP and sestamibi scintigraphy. J Nucl Med 1996;37:718–22.

    PubMed  CAS  Google Scholar 

  50. Hashimoto A, Nakata T, Tsuchihashi K, et al. Postischemic functional recovery and BMIPP uptake after primary percutaneous transluminal coronary angioplasty in acute myocardial infarction. Am J Cardiol 1996;77:25–30.

    Article  PubMed  CAS  Google Scholar 

  51. Ito T, Tanouchi J, Kato J, et al. Recovery of impaired left ventricular function in patients with acute myocardial infarction is predicted by the discordance in defect size on 123I-BMIPP and 201Tl SPECT images. Eur J Nucl Med 1996;23:917–23.

    Article  PubMed  CAS  Google Scholar 

  52. Vanoverschelde J-L, Wijns W, Depré C, Essamri B, Heyndrickx G, Borgers M, et al. Mechanisms of chronic regional postischemic dysfunction in humans: new insights from the study of non-infarcted collateral dependent myocardium. Circulation 1993;87:1513–23.

    PubMed  CAS  Google Scholar 

  53. Stollfuss J, Haas F, Neverve J, Nekolla S, Schneider-Eicke J, Schwaiger M. Gated Tc-99m tetrofosmin SPECT for assessment of viability in patients with severe left ventricular dysfunction [abstract]. J Nucl Med 1997;38(suppl):97P.

    Google Scholar 

  54. Shareef B, Ahlberg AW, Levine MG, Giri S, Piriz JM, Russel A, et al. Gated technetium-99m SPECT imaging predicts myocardial viability in revascularized patients. J Am Coll Cardiol 1998;31(suppl A):377A.

    Google Scholar 

  55. Kuwabara Y, Matsuno K, Mikami Y, Kuroda T, Yamanouchi M, Aioi S, et al. Assessment of myocardium viability with gated SPECT Tc-99m tetrofosmin (TF) imaging during dobutamine administration: a comparison with FDG-PET [abstract]. J Nucl Med 1996;37(suppl):116P. 0180 0135

    Google Scholar 

  56. Levine MG, McGill CC, Azar RR, Cross DM, White MP, Ahlberg AW, et al. Low dose dobutamine ECG gated SPECT myocardial perfusion imaging with technetium-99m sestamibi predicts myocardial viability: a prospective study [abstract]. J Am Coll Cardiol 1998;31(2 suppl A):44A.

    Article  Google Scholar 

  57. Perez-Balino, Masoli OH, Meretta OH, Rodriguez A, Cragnolino DE, Perrone S, et al. Amrinone stimulation test: ability to predict improvement in left ventricular ejection fraction after coronary bypass surgery in patients with poor baseline left ventricular function. J Am Coll Cardiol 1996;28:1488–92.

    Article  PubMed  CAS  Google Scholar 

  58. Ventosa A, Trabulo M, Gil V, Almeida M, Bronze L, Calqueiro J, et al. Prognostic value of radionuclide ventriculography with inotropic stimulation in patients with left ventricular dysfunction [abstract]. J Am Coll Cardiol 1997;29(suppl A):481A.

    Google Scholar 

  59. Zafrir N, Vidne B, Bassevitch R, Sclarovsky S, Lubin E. Dobutamine radionuclide ventriculography: prediction of ventricular function improvement with ischemic cardiomyopathy (abstr.). J Am Coll Cardiol 1997;29(2 suppl A):481A.

    Google Scholar 

References

  1. Davies M. Reactive oxygen species, metalloproteinases, and plaque stability. Circulation 1998;97:2382–3.

    PubMed  CAS  Google Scholar 

  2. Port S. Recent advances in first-pass radionuclide angiography. Cardiol Clin 1994;12:359–72.

    PubMed  CAS  Google Scholar 

  3. Okada R, Kirshenbaum HD, Kusher FG, et al. Observer variance in the qualitative evaluation of left ventricular wall motion and the quantification of left ventricular ejection fraction using rest and exercise multigated blood pool imaging. Circulation 1980;61:128–34.

    PubMed  CAS  Google Scholar 

  4. Berman D, Germano G, Kiat H, et al. Simultaneous perfusion/function imaging. J Nucl Cardiol 1995;2:271–3.

    Article  PubMed  CAS  Google Scholar 

  5. Nichols K, Depuey E, Rozanski A. Automation of gated (SPECT) tomographic left ventricular ejection fraction. J Nucl Cardiol 1996;3:475–82.

    Article  PubMed  CAS  Google Scholar 

  6. Schelbert HS, Demer LL. Evaluation of myocardial blood flow in cardiac disease. In: Skorton DJ, et al, eds. Marcus cardiac imaging: a companion to Braunwald's heart disease. Philadelphia: WB Saunders; 1996:1093–113.

    Google Scholar 

  7. Maddahi J. Myocardial perfusion imaging for the detection and evaluation of coronary artery disease. In: Skorton DJ, et al, eds. Marcus cardiac imaging: a companion to Braunwald's heart disease. Philadelphia: WB Saunders; 1996:971–96.

    Google Scholar 

  8. Maddahi J, Czernin J. Absolute quantitation of myocardial blood flow: the technical and clinical prospects for single-photon emission computed tomography. J Nucl Cardiol 1996;3(suppl):S60–5.

    Article  Google Scholar 

  9. Prigent FM, Maddahi J, Van Train KF, et al. Comparison of thallium-201 SPECT and planar imaging methods for quantification of experimental myocardial infarct size. Am Heart J 1991;122:972–9.

    Article  PubMed  CAS  Google Scholar 

  10. Christian TF, Gibbons RJ. Myocardial perfusion imaging in myocardial infarction and unstable angina. In: Verani MS, ed. Cardiology clinics. Philadelphia: WB Saunders; 1994;247–61.

    Google Scholar 

  11. Nagamachi S, Czernin J, Kim AS, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med 1996;37:1626–31.

    PubMed  CAS  Google Scholar 

  12. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease: a potential noninvasive marker of healing coronary endothelium. Circulation 1994;89:1530–8.

    PubMed  CAS  Google Scholar 

  13. Prigent F, Berman DS, Elashoff J, et al. Reproducibility of stress redistribution thallium-201 SPECT quantitative indexes of hypoprefused myocardium secondary to coronary artery disease. Am J Cardiol 1993;70:1255–63.

    Article  Google Scholar 

  14. Rogers W, Bourassa MG, Andrews TC, et al. Outcome at 1 year for patients with asymptomatic cardiac ischemia randomized to medical therapy or revascularization. J Am Coll Cardiol 1995;26:594–605.

    Article  PubMed  CAS  Google Scholar 

  15. Mahmarian J, Fenimore NL, Marks GF, et al. Transdermal nitroglycerin patch therapy reduces the extent of exercise-induced myocardial ischemia: Results of a double-blind, placebo-controlled trial using quantitative thallium-201 tomography. J Am Coll Cardiol 1994;24:25–32.

    Article  PubMed  CAS  Google Scholar 

  16. Mahmarian J, Moye LA, Verani MS, et al. High reproducibility of myocardial perfusion defects in patients undergoing serial exercise thallium-201 tomography. Am J Cardiol 1995;75:1116–9.

    Article  PubMed  CAS  Google Scholar 

  17. Shehata A, Gillam LD, Mascitelli VA, et al. Impact of acute propranolol administration on dobutamine-induced myocardial ischemia as evaluated by myocardial perfusion imaging and echocardiography. Am J Cardiol 1997;80:268–72.

    Article  PubMed  CAS  Google Scholar 

  18. Gould KL, Ornish D, Scherwitz L, et al. Changes in myocardial perfusion abnormalities by positron emission tomography after long-term, intense risk factor modification. JAMA 1995;274:894–901.

    Article  PubMed  CAS  Google Scholar 

  19. Czernin J, Barnard RJ, Sun KT, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995;92:197–204.

    PubMed  CAS  Google Scholar 

  20. Mahmarian J, Moye LA, Nasser GA, et al. Nicotine patch therapy in smoking cessation reduces the extent of exercise-induced myocardial ischemia. J Am Coll Cardiol 1997;30:125–30.

    Article  PubMed  CAS  Google Scholar 

  21. Czernin J, Sun K, Brunken R, et al. Effect of acute and long-term smoking on myocardial blood flow and flow reserve. Circulation 1995;91:2891–7.

    PubMed  CAS  Google Scholar 

  22. Dakik H, Kleiman NS, Farmer JA, et al. Intensive medical therapy versus coronary angioplasty for suppressing myocardial ischemia in survivors of acute myocardial infarction: a prospective randomized pilot study. Circulation (in press).

  23. Sharif T, Livschitz S, Rabinowitz B, et al. Anti-ischemic drugs reduce size of reversible defects in dipyadamole/submaximal exercise Tl-201 SPECT imaging [abstract]. J Nucl Cardiol 1997;4:S71.

    Article  Google Scholar 

  24. Parisi A, Hartigan P, Folland E. Evaluation of exercise thallium scintigraphy versus exercise electrocardiography in predicting survival outcomes and morbid cardiac events in patients with single- and double-vessel disease: findings from the Angioplasty Compared to Medicine (ACME) study. J Am Coll Cardiol 1997;30:1256–63.

    Article  PubMed  CAS  Google Scholar 

  25. Ritchie J, Bateman T, Bonow R, et al. Guidelines for clinical use of cardiac radionuclide imaging: report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Radionuclide Imaging), developed in collaboration with the American Society of Nuclear Cardiology. J Am Coll Cardiol 1995;25:521–47.

    Article  PubMed  CAS  Google Scholar 

  26. Gibbons R, Balady GJ, Beasley JW, et al. ACC/AHA Guidelines for Exercise Testing: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol 1997;30:260–315.

    Article  PubMed  CAS  Google Scholar 

  27. Hecht H, Shaw R, Bruce RT, et al. Usefulness of tomographic thallium-201 imaging for detection of restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 1990;6:1314–8.

    Article  Google Scholar 

  28. Hecht H, Shaw RE, Chin HL, et al. Silent ischemia after coronary angioplasty: evaluation of restenosis and extent of ischemia in asymptomatic patients by tomographic thallium-201 exercise imaging and comparison with symptomatic patients. J Am Coll Cardiol 1991;17:670–7.

    Article  PubMed  CAS  Google Scholar 

  29. O'Keefe J, Lapeyre AC, Holmes DR, et al. Usefulness of early radionuclide angiography for identifying low-risk patients for late restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 1988;61:51–4.

    Article  PubMed  Google Scholar 

  30. Borges-Neto S, Shaw L, Kesler K, et al. Usefulness of serial radionuclide angiography in predicting cardiac death after coronary artery bypass grafting and comparison with clinical and cardiac catheterization data. Am J Cardiol 1997;79:851–5.

    Article  PubMed  CAS  Google Scholar 

  31. Wallis J, Supino P, Borer J. Prognostic value of left ventricular ejection fraction response to exercise during long-term follow up after coronary artery bypass surgery. Circulation 1993;88(suppl):99–109.

    Google Scholar 

  32. Miller T, Christian TF, Hodge DO, et al. Prognostic value of exercise thallium-201 imaging performed within 2 years of coronary artery bypass graft surgery. J Am Coll Cardiol 1998;31:848–54.

    Article  PubMed  CAS  Google Scholar 

  33. Palmas W, Bingham S, Diamond G, et al. Incremental prognostic value of myocardial single-photon emission computed tomography late after coronary artery bypass surgery. J Am Coll Cardiol 1995;25:403–9.

    Article  PubMed  CAS  Google Scholar 

  34. Lauer M, Lytle B, Pashkow F, et al. Prediction of death and myocardial infarction by screening with exercise-thallium testing after coronary-artery-bypass grafting. Lancet 1998;351:615–22.

    Article  PubMed  CAS  Google Scholar 

  35. Nallamothu N, Johnson JH, Bagheri B, et al. Utility of stress single-photon emission computed tomography (SPECT) perfusion imaging in predicting outcome after coronary artery bypass grafting. Am J Cardiol 1997;80:1517–21.

    Article  PubMed  CAS  Google Scholar 

  36. The BARI Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med 1996;335:217–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by DuPont Pharmaceuticals, Medical Imaging Division, North Billerica, Mass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beller, G.A., Zaret, B.L. Wintergreen panel summaries. J Nucl Cardiol 6, 93–155 (1999). https://doi.org/10.1016/S1071-3581(99)90070-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(99)90070-3

Keywords

Navigation