Skip to main content
Log in

Prognostic value of myocardial perfusion imaging: State of the art and new developments

  • Reviews
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Although the prognostic value of myocardial perfusion imaging is now well established, new data have continued to expand its role in the management of patients. This review addresses the current state-of-the-art and new developments in the use of myocardial perfusion imaging for determining cardiac risk and integrating such information into patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging: a diagnostic tool comes of age. Circulation 1991; 83:363–81.

    PubMed  CAS  Google Scholar 

  2. Steinberg EH, Koss JH, Lee M, Grunwald AM, Bodenheimer MM. Prognostic significance from 10-yr follow-up of a qualitatively normal planar exercise thallium test in suspected coronary artery disease. Am J Cardiol 1993;71:1270–3.

    Article  PubMed  CAS  Google Scholar 

  3. Fagan LF Jr, Shaw L, Kong BA, Caralis DG, Wiens RD, Chaitman BR. Prognostic value of exercise thallium scintigraphy in patients with good exercise tolerance and a normal or abnormal exercise electrocardiogram and suspected or confirmed coronary artery disease. Am J Cardiol 1992;69:607–11.

    Article  PubMed  Google Scholar 

  4. Schalet BD, Kegel JG, Heo J, Segal BL, Iskandrian AS. Prognostic implications of normal exercise SPECT thallium images in patients with strongly positive exercise electrocardiograms. Am J Cardiol 1993;72:1201–3.

    Article  PubMed  CAS  Google Scholar 

  5. Krishnan R, Lu J, Dae MW, Botvinick EH. Does myocardial perfusion scintigraphy demonstrate clinical usefulness in patients with markedly positive exercise tests: an assessment of the method in a high-risk subset? Am Heart J 1994;127:804–16.

    Article  PubMed  CAS  Google Scholar 

  6. Brown KA, Rowen M. Prognostic value of a normal exercise myocardial perfusion imaging study in patients with angiographically significant coronary artery disease. Am J Cardiol 1993;71:865–7.

    Article  PubMed  CAS  Google Scholar 

  7. Abdel-Farrah A, Kamal AM, Pancholy S, Ghods M, Russell J, Cassel D, et al. Prognostic implications of normal exercise tomographic thallium images in patients with angiographic evidence of significant coronary artery disease. Am J Cardiol 1994;74:769–71.

    Article  Google Scholar 

  8. Doat M, Podio V, Pavin D, Rutishauser W, Righetti A. Long term prognostic significance of normal or abnormal exercise TI-201 myocardial scintigraphy in patients with or without significant coronary stenosis [abstract]. J Am Coll Cardiol 1994;23:158A.

    Google Scholar 

  9. Brown K, Rowen M. Impact of antianginal medications, peak heart rate and stress level on the prognostic value of a normal exercise myocardial perfusion imaging study. J Nucl Med 1993; 34:1467–71.

    PubMed  CAS  Google Scholar 

  10. Brown KA, Altland E, Rowen M. Prognostic value of normal technetium-99m sestamibi cardiac imaging. J Nucl Med 1994; 35:554–7.

    PubMed  CAS  Google Scholar 

  11. Raiker K, Sinusas AJ, Wackers FJTh, Zaret BL. One-year prognosis of patients with normal planar or single-photon emission computed tomographic technetium-99m-labeled sestamibi exercise imaging. J Nucl Med 1994;1:449–56.

    CAS  Google Scholar 

  12. Stratmann HG, Williams GA, Wittry MD, Chaitman BR, Miller DD. Exercise technetium-99m sestamibi tomography for cardiac risk stratification of patients with stable chest pain. Circulation 1994;89:615–22.

    PubMed  CAS  Google Scholar 

  13. Stratmann HG, Tamesis BR, Younis LT, Wittry MD, Miller DD. Prognostic value of dipyridamole technetium-99m sestamibi myocardial tomography in patients with stable chest pain who are unable to exercise. Am J Cardiol 1994;73:647–52.

    Article  PubMed  CAS  Google Scholar 

  14. Machecort J, Longere P, Fagret D, Vanzetto G, Wolf JE, Polidori C, et al. Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect: study in 1,926 patients with follow-up at 33 months. J Am Coll Cardiol 1994;23:1096–106.

    Google Scholar 

  15. Kaul S, Lilly DR, Gasho JA, Watson DD, Gibson RS, Oliner CA, Ryan JM, Beller GA. Prognostic utility of the exercise thallium-201 test in ambulatory patients with chest pain. Circulation 1988;77:745–8.

    PubMed  CAS  Google Scholar 

  16. Gill JB, Ruddy TD, Newell JB, Finkelstein DM, Strauss HW, Boucher CA. Prognostic importance of thallium uptake by the lungs during exercise coronary artery disease. N Engl J Med 1987;317:1485–9.

    Google Scholar 

  17. Younis LT, Byers S, Shaw L, Barth G, Goodgold H, Chaitman BR. Prognostic importance of silent myocardial ischemia detected by intravenous dipyridamole-thallium myocardial imaging in asymptomatic patients with coronary artery disease. J Am Coll Cardiol 1989;14:1635–41.

    PubMed  CAS  Google Scholar 

  18. Hendel RC, Layden JJ, Leppo JA. Prognostic value of dipyridamole-thallium scintigraphy for evaluation of ischemic heart disease. J Am Coll Cardiol 1990;15:109–16.

    PubMed  CAS  Google Scholar 

  19. Stratman HG, Mark AL, Walter KE, Williams GA. Prognostic value of atrial pacing and thallium-201 scintigraphy in patients with stable chest pain. Am J Cardiol 1989;64:985–90.

    Article  Google Scholar 

  20. Wilson WW, Gibson RS, Nygaard TW, Craddock GB, Watson DD, Crampton RS, et al. Acute myocardial infarction associated with single vessel coronary artery disease: an analysis of clinical outcome and the prognostic importance of vessel patency and residual ischemic myocardium. J Am Coll Cardiol 1988;11:223–34.

    PubMed  CAS  Google Scholar 

  21. Leppo JA, O’Brien, Rothendler JA, Getchell JD, Lee VW. Dipyridamole-thallium-201 scintigraphy in the prediction of future cardiac events after acute myocardial infarction. N Engl J Med 1984;310:1014–8.

    PubMed  CAS  Google Scholar 

  22. Pirelli S, Inglese E, Suppa M, Corrada E, Campolo L. Dipyridamole-thallium-201 scintigraphy in the early post-infarction period. Eur Heart J 1988;9:1324–31.

    PubMed  CAS  Google Scholar 

  23. Younis LT, Byers S, Shaw L, Barth G, Goodgold H, Chaitman BR. Prognostic value of intravenous dipyridamole-thallium scintigraphy after acute myocardial ischemic events. Am J Cardiol 1989;64:161–6.

    Article  PubMed  CAS  Google Scholar 

  24. Gimple LW, Hutter AM, Guiney TE, Boucher CA. Prognostic utility of predischarge dipyridamole-thallium imaging after uncomplicated acute myocardial infarction. Am J Cardiol 1989;64:1243–8.

    Article  PubMed  CAS  Google Scholar 

  25. Brown KA, O’Meara J, Chambers CE, Plante DA. Ability of dipyridamole-thallium-201 imaging 1 to 4 hours after acute myocardial infarction to predict in-hospital and later recurrent myocardial ischemic events. Am J Cardiol 1990;65:160–7.

    Article  PubMed  CAS  Google Scholar 

  26. Bosch X, March R, Magrina J, Betriu A, Sang G, Navarro-Lopey F. Prediction of in-hospital cardiac events using dipyridamole perfusion scintigraphy after myocardial infarction [abstract]. Circulation 1989;80(suppl):II-307.

    Google Scholar 

  27. Gibson RS, Beller GA, Gheorghiade M, Nygaard TW, Watson DD, Huey EL, et al. The prevalence and clinical significance of residual myocardial ischemia 2 weeks after uncomplicated non-Q-wave myocardial infarction: a prospective natural history study. Circulation 1986;73:1186–98.

    PubMed  CAS  Google Scholar 

  28. Brown KA, Weiss RM, Clements JP, Wackers FJTh. Usefulness of residual ischemic myocardium within prior infarct zone for identifying patients at high risk late after acute myocardial infarction. Am J Cardiol 1987;60:15–9.

    Article  PubMed  CAS  Google Scholar 

  29. Boucher CA, Brewster DC, Darling RC, Okada RD, Strauss HW, Pohost GM. Determination of cardiac risk by dipyridamole-thallium imaging before peripheral vascular surgery. N Engl J Med 1985;312:389–94.

    PubMed  CAS  Google Scholar 

  30. Leppo J, Plaja J, Gionet M, Tumolo J, Paraskos JA, Cutler BS. Noninvasive evaluation of cardiac risk before elective vascular surgery. J Am Coll Cardiol 1987;9:269–76.

    PubMed  CAS  Google Scholar 

  31. Eagle KA, Singer DE, Brewster DC, Darling RC, Mulley AG, Boucher CA. Dipyridamole-thallium scanning in patients undergoing vascular surgery: optimizing pre-operative evaluation of cardiac risks. JAMA 1987;257:2185–9.

    Article  PubMed  CAS  Google Scholar 

  32. Sachs RN, Tellier P, Larmignat P, Azorin J, Fischbein L, Beaudet B, et al. Assessment by dipyridamole-thallium-201 myocardial scintigraphy of coronary risk before peripheral vascular surgery. Surgery 1988;103:584–7.

    PubMed  CAS  Google Scholar 

  33. Eagle KA, Coley CM, Newell JB, Breuster DC, Darling RC, Strauss HW, et al. Combining clinical and thallium data optimizes preoperative assessment of cardiac risk before major vascular surgery. Ann Intern Med 1989;110:859–66.

    PubMed  CAS  Google Scholar 

  34. Lette J, Waters D, Lassonde J, Dube S, Heyen F, Picard M, et al. Postoperative myocardial infarction and cardiac death. Ann Surg 1990;211:84–90.

    Article  PubMed  CAS  Google Scholar 

  35. Lane SE, Lewis SM, Pippin JJ, Kosinski EJ, Campbell D, Nesto RW, et al. Predictive value of quantitative dipyridamole-thallium scintigraphy in assessing cardiovascular risk after vascular surgery in diabetes mellitus. Am J Cardiol 1989;64:1275–39.

    Article  PubMed  CAS  Google Scholar 

  36. Lette J, Waters D, Lapointe J, Gaynor A, Picard M, Cerino M, et al. Usefulness of the severity and extent of reversible perfusion defects during thallium-dipyridamole imaging for cardiac risk assessment before noncardiac surgery. Am J Cardiol 1989;64:276–81.

    Article  PubMed  CAS  Google Scholar 

  37. Brown KA, Rimmer J, Haisch C. Noninvasive cardiac risk stratifications of diabetic and nondiabetic uremic renal allograft candidates using dipyridamole-thallium-201 imaging and radionuclide ventriculography. Am J Cardiol 1989;64:1017–21.

    Article  PubMed  CAS  Google Scholar 

  38. Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM, et al. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: does it represent scar or ischemia? Am Heart J 1985;110:996–1001.

    Article  PubMed  CAS  Google Scholar 

  39. Yang LD, Berman DS, Kiat H, Resser KJ, Friedman JD, Royanski A, et al. The frequency of late reversibility in SPECT thallium-201 stress-redistribution studies. J Am Coll Cardiol 1990;15:334–40.

    Article  PubMed  CAS  Google Scholar 

  40. Botvinick EH. Late reversibility: a viability issue. J Am Coll Cardiol 1990;15:341–4.

    PubMed  CAS  Google Scholar 

  41. Brunken R, Schwaiger M, Grover McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 1987;10:557–67.

    PubMed  CAS  Google Scholar 

  42. Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–92.

    PubMed  CAS  Google Scholar 

  43. Bodenheimer MM, Wackers FJTh, Schwartz RG, Brown M, et al. Prognostic significance of a fixed thallium defect one to six months after onset of acute myocardial infarction or unstable angina. Am J Cardiol 1994;74:1196–200.

    Article  PubMed  CAS  Google Scholar 

  44. Brown KA, Rowen M, Altland E. Prognosis of patients with an isolated fixed thallium-201 defect and no prior myocardial infarction. Am J Cardiol 1993;72:1199–201.

    Article  PubMed  CAS  Google Scholar 

  45. Pieri PL, Tisselli A, Moscatelli G, Spinelli A, Riva P. Prognostic value of Tl-201 reinjection (RI) in patients with chronic myocardial infarction [abstract]. J Nucl Cardiol 1995;2:S89.

    Article  Google Scholar 

  46. Pollock SG, Abbott RD, Boucher CA, Beller GA, Kaul S. Independent and incremental prognostic value of tests performed in hierarchial order to evaluate patients with suspected coronary artery disease. Circulation 1992;85:237–48.

    PubMed  CAS  Google Scholar 

  47. Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993;22:665–70.

    Article  PubMed  CAS  Google Scholar 

  48. Palmas W, Bingham S, Diamond GA, Denton AT, Kiat H, Friedman JD, et al. Incremental prognostic value of exercise thallium-201 myocardial single-photon emission computed tomography late after coronary artery bypass surgery. J Am Coll Cardiol 1995;25:403–9.

    Article  PubMed  CAS  Google Scholar 

  49. Theroux P, Waters DD, Halpen C, Desbaisieux JC, Mizgala HF. Prognostic value of exercise testing soon after myocardial infarction. N Engl J Med 1979;361:341–5.

    Google Scholar 

  50. Starling MR, Crawford MH, Kennedy GT, O’Rourke RA. Exercise testing early after myocardial infarction: predictive value of subsequent unstable angina and death. Am J Cardiol 1980;46:909–14.

    Article  PubMed  CAS  Google Scholar 

  51. Fioretti P, Brower RW, Simoons ML, et al. Prediction of mortality during the first year after acute myocardial infarction from clinical variables and stress test at hospital discharge. Am J Cardiol 1985;55:1313–8.

    Article  PubMed  CAS  Google Scholar 

  52. Weld FM, Chu K-L, Bigger JT, Roinitzky LM. Risk stratification with low-level exercise testing 2 weeks after acute myocardial infarction. Circulation 1981;64:306–14.

    PubMed  CAS  Google Scholar 

  53. Williams WL, Nair RC, Higginson LA, Baird MG, Allan K, Beanlands DS. Comparison of clinical and treadmill variables for the prediction of outcome after myocardial infarction. J Am Coll Cardiol 1984;4:477–86.

    PubMed  CAS  Google Scholar 

  54. Jelinek VM, McDonald IG, Ryan WF, Ziffer RW, Clemens A, Gerloff J. Assessment of cardiac risk 10 days after uncomplicated myocardial infarction. Br Med J 1982;284:227–30.

    CAS  Google Scholar 

  55. Jennings K, Reid DS, Hawkins T, Julian DJ. Role of exercise testing early after myocardial infarction in identifying candidates for coronary surgery. Br Med J 1984;288:185–7.

    Article  CAS  Google Scholar 

  56. Handler CE. Submaximal predischarge exercise testing after myocardial infarction: prognostic value and limitations. Eur Heart J 1985;6:510–7.

    PubMed  CAS  Google Scholar 

  57. Krone RJ, Gillespie JA, Weld FM, Miller JP, Moss AJ. Low-level exercise testing after myocardial infarction: usefulness in enhancing clinical risk stratification. Circulation 1985;71:80–9.

    PubMed  CAS  Google Scholar 

  58. Borer JS, Rosing DR, Miller RH, Stark RM, Kent KM, Bacharach SL, et al. Natural history of left ventricular function during 1 year after acute myocardial infarction: comparison with clinical, electrocardiographic and biochemical determinations. Am J Cardiol 1980;46:10–2.

    Article  Google Scholar 

  59. Froelicher VF, Perdue S, Pewen W, Risch M. Application of meta-analysis using an electronic spread sheet to exercise testing in patients after myocardial infarction. Am J Med 1987;83:1045–54.

    Article  PubMed  CAS  Google Scholar 

  60. Froelicher VF. Exercise testing and training. New York: LeJacq Publishing, 1983:74–111.

    Google Scholar 

  61. Gianrossie R, Detrano R, Mulvihill D, Lehman K, Dubach P, Colombo A, et al. Exercise induced ST depression in the diagnosis of coronary artery disease: a meta-analysis. Circulation 1989;80:87–98.

    Google Scholar 

  62. Dunn RF, Bailey IK, Uren R, Kelly DT. Exercise-induced ST segment elevation: correlation of thallium-201 myocardial perfusion scanning and coronary arteriography. Circulation 1980;61: 989–95.

    PubMed  CAS  Google Scholar 

  63. The TIMI Study Group. Comparison of invasive and conservative strategies after treatment with intravenous tissue plasminogen activator in acute myocardial infarction: results of the Thrombolysis in Myocardial Infarction (TIMI) Phase II Trial. N Engl J Med 1989;320:618–27.

    Google Scholar 

  64. SWIFT (Should We Intervene Following Thrombolysis) Trial Study Group. Trial of delayed elective intervention vs conservative treatment after thrombolysis with antistreplase in acute myocardial infarction. Br Med J 1991;302:555–60.

    Google Scholar 

  65. Ellis SG, Moonly MR, George BS, daSilva EER, Talley JD, Flanagan WH, et al. Randomized trial of late elective angioplasty versus conservative management for patients with residual stenoses after thrombolytic treatment of myocardial infarction: Treatment of Post-Thrombolytic Stenoses (TOPS) Study Group. Circulation 1992;86:1400–6.

    PubMed  CAS  Google Scholar 

  66. Tilkemeier PL, Guiney THE, LaRaia PJ, Boucher CA. Prognostic value of predischarge low-level exercise thallium testing after thrombolytic treatment of acute myocardial infarction. Am J Cardiol 1990;66:1203–7.

    Article  PubMed  CAS  Google Scholar 

  67. Miller TD, Gersh BJ, Christian TF, Bailey KR, Gibbons RJ. Limited prognostic value of thallium-201 exercise treadmill testing early after myocardial infarction in patients treated with thrombolysis. Am Heart J 1995;130:259–66.

    Article  PubMed  CAS  Google Scholar 

  68. Manyari DE, Kundtson M, Kloiber R, Roth D. Sequential thallium-201 myocardial perfusion studies after successful percutaneous transluminal coronary angioplasty: delayed resolution of exercise-induced scintigraphic abnormalities. Circulation 1988;77:86–95.

    PubMed  CAS  Google Scholar 

  69. Gimple LW, Beller GA. Assessing prognosis after myocardial infarction in the thrombolytic era. J Nucl Cardiol 1994;1:198–209.

    PubMed  CAS  Google Scholar 

  70. Anderson HW, Willerson JT. Thrombolysis in acute myocardial infarction. N Engl J Med 1993;329:703–9.

    Article  PubMed  CAS  Google Scholar 

  71. Leppo JA, Boucher CA, Okada RD, Newell JB, Strauss W, Pohost GM. Serial Tl-201 myocardial imaging after dipyridamole infusion: diagnostic utility in detecting coronary stenoses and relationship to regional wall motion. Circulation 1982;66:649–56.

    PubMed  CAS  Google Scholar 

  72. Iskandrian AS, Heo J, Askenase A, Segal BL, Auerbach N. Dipyridamole cardiac imaging. Am Heart J 1988;115:432–43.

    Article  PubMed  CAS  Google Scholar 

  73. Homma S, Gilliland Y, Guiney TE, Strauss HW, Boucher CA. Safety of intravenous dipyridamole for stress testing with thallium imaging. Am J Cardiol 1987;59:152–4.

    Article  PubMed  CAS  Google Scholar 

  74. Mahmarian JJ, Pratt CM, Nishimura S, Abreu A, Verani MS. Quantitative adenosine 201Tl single-photon emission computed tomography for the early assessment of patients surviving acute myocardial infarction. Circulation 1993;87:1197–210.

    PubMed  CAS  Google Scholar 

  75. Mahmarian JJ, Mahmarian AC, Marks GF, Pratt CM, Verani MS. Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol 1995;25:1333–40.

    Article  PubMed  CAS  Google Scholar 

  76. Brown KA, Heller GV, Landin RJ, Hale CA, Haber SB. Prognostic value of IV dipyridamole Tc99m sestamibi SPECT imaging early post myocardial infarction for prediction of in-hospital cardiac events. Circulation 1995;92:522–3.

    Google Scholar 

  77. Travin MI, Dessouki A, Cameron T, Heller GV. Use of exercise technetium-99m sestamibi SPECT imaging to detect residual ischemia and for risk stratification after acute myocardial infarction. Am J Cardiol 1995;74:665–9.

    Article  Google Scholar 

  78. Theroux P, Ouimet H, McCans J, et al. Aspirin, heparin, or both in unstable angina. N Engl J Med 1985;313:1369.

    Google Scholar 

  79. HINT Research Group. Early treatment of unstable angina in the coronary care unit: a randomized, double blind, placebo controlled comparison of recurrent ischemia in patients treated with nifedipine or metroprolol or both. Br Heart J 1986;56:400–13.

    Article  Google Scholar 

  80. Grambow DW, Topol EJ. Effect of maximal medical therapy on refractoriness of unstable angina pectoris. Am J Cardiol 1992; 70:577–81.

    Article  PubMed  CAS  Google Scholar 

  81. National Cooperative Study Group. Unstable angina: National Cooperative Study Group to compare surgical and medical therapy, II: in-hospital experience and initial follow-up results in patients with one, two, and three vessel disease. Am J Cardiol 1978;42:839–48.

    Article  Google Scholar 

  82. Luchi RJ, Scott SM, Deupree RH. Comparison of medical and surgical treatment for unstable angina pectoris. N Engl J Med 1987;316:977–84.

    PubMed  CAS  Google Scholar 

  83. Parisi AF, Khuri S, Deupree RH, Sharma GVRK, Scott SM, Luchi RJ. Medical compared with surgical management of unstable angina: 5-year mortality and morbidity in the Veterans Administration Study. Circulation 1989;80:1176–89.

    PubMed  CAS  Google Scholar 

  84. The TIMI IIIB Investigators. Effects of tissue plasminogen activator and a comparison of early invasive and conservative strategies in unstable angina and non-Q-wave myocardial infarction: results of the TIMI IIIB trial. Circulation 1994;89: 1545–56.

    Google Scholar 

  85. Hillert MC, Narahara KA, Smitherman TC, Burden LL, Wyatt JC III. Thallium-201 perfusion imaging after the treatment of unstable angina pectoris: relationship to clinical outcome. West J Med 1986;145:355–40.

    Google Scholar 

  86. Madsen JK, Stubgaard M, Utne HE, et al. Prognosis and thallium-201 scintigraphy in patients admitted with chest pain without confirmed acute myocardial infarction. Br Heart J 1988; 59:184–9.

    Article  PubMed  CAS  Google Scholar 

  87. Marmur JD, Freeman MR, Langer A, et al. Prognosis in medically stabilized unstable angina: early Holter ST segment monitoring compared with predischarge exercise thallium tomography. Ann Intern Med 1990;113:575–9.

    PubMed  CAS  Google Scholar 

  88. Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging in patients with unstable angina who respond to medical treatment. J Am Coll Cardiol 1991;17:1053–7.

    Article  PubMed  CAS  Google Scholar 

  89. Stratmann HG, Younis LT, Wittry MD, Amato M, Miller DD. Exercise technetium-99m myocardial tomography for the risk stratification of men with medically treated unstable angina pectoris. Am J Cardiol 1995;76:236–40.

    Article  PubMed  CAS  Google Scholar 

  90. Hertzer NR, Beven EG, Young JR, et al. Coronary artery disease in peripheral vascular patients: a classification of 1000 coronary angiograms and results of surgical management. Ann Surg 1984;199:223–33.

    Article  PubMed  CAS  Google Scholar 

  91. Brown OW, Hollier LH, Pairolero RC, Kazmier FG, McCready RA. Abdominal aortic aneurysm and coronary artery disease: a reassessment. Arch Surg 1981;116:1484–7.

    PubMed  CAS  Google Scholar 

  92. Blombery PA, Ferguson IA, Rosengarten DS, et al. The role of coronary artery disease in complications of abdominal aortic aneurysm surgery. Surgery 1987;101:150–5.

    PubMed  CAS  Google Scholar 

  93. McEnroe CS, O’Donnell TF Jr, Yeager A, Konstam M, Mackey WC. Comparison of ejection fraction and Goldman risk factor analysis to dipyridamole-thallium-201 studies in the evaluation of cardiac morbidity after aortic aneurysm surgery. J Vasc Surg 1990;11:497–504.

    Article  PubMed  CAS  Google Scholar 

  94. Jeffrey CC, Kunsman J, Cullen DJ, Brewster DC. A prospective evaluation of cardiac risk index. Anesthesiology 1983;58:462–4.

    Article  PubMed  CAS  Google Scholar 

  95. Goldman L, Caldera DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B, et al. Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med 1977;297:845–50.

    PubMed  CAS  Google Scholar 

  96. Goldman L, Caldera DL, Southwick FS, Nussbaus SR, Murray B, O’Malley AT, et al. Cardiac risk factors and complications in non-cardiac surgery. Medicine 1978;57:357–70.

    Article  PubMed  CAS  Google Scholar 

  97. Cohn PF. Asymptomatic coronary artery disease: pathophysiology, diagnosis, management. Mod Concepts Cardiovasc Dis 1981;50:55–60.

    PubMed  CAS  Google Scholar 

  98. L’Italien GJ, Paul SD, Hendel RC, Leppo JA, Cohen MC, Fleisher LA, et al. Development and validation of a Bayesian model for perioperative cardiac risk assessment in a cohort of 1,081 vascular surgical candidates. J Am Coll Cardiol 1996;27: 779–86.

    Article  PubMed  CAS  Google Scholar 

  99. Hendel RC, Leppo JA. The value of perioperative clinical indexes and dipyridamole thallium scintigraphy for the prediction of myocardial infarction and cardiac death in patients undergoing vascular surgery. J Nucl Cardiol 1995;2:18–25.

    Article  PubMed  CAS  Google Scholar 

  100. Lette J, Waters D, Cerino M, Picard M, Champagne P, Lapointe J. Preoperative coronary artery disease risk stratification based on dipyridamole imaging and a simple three-step, three-segment model for patients undergoing noncardiac vascular surgery or major general surgery. Am J Cardiol 1992;69:1553–8.

    Article  PubMed  CAS  Google Scholar 

  101. Brown KA, Rowen M. Extent of jeopardized viable myocardium determined by myocardial perfusion imaging best predicts perioperative cardiac events in patients undergoing noncardiac surgery. J Am Coll Cardiol 1993;21:325–30.

    PubMed  CAS  Google Scholar 

  102. Hendel RC, Whitfield SS, Billegas BJ, Cutler BS, Leppo JA. Prediction of late cardiac events by dipyridamole thallium imaging in patients undergoing elective vascular surgery. Am J Cardiol 1992;70:1243–9.

    Article  PubMed  CAS  Google Scholar 

  103. Younis LT, Aguirre F, Byers S, Dowell S, Barth G, Walker H, et al. Perioperative and long-term prognostic value of intravenous dipyridamole thallium scintigraphy in patients with peripheral vascular disease. Am Heart J 1990;119:1287–92.

    Article  PubMed  CAS  Google Scholar 

  104. Urbinati S, DiPasquale G, Andreoli A, Lusa AM, Ruffini M, Lanzino G, et al. Frequency and prognostic significance of silent coronary artery disease in patients with cerebral ischemia undergoing carotid endarterectomy. Am J Cardiol 1992;69:1166–70.

    Article  PubMed  CAS  Google Scholar 

  105. Coley CM, Field TS, Abraham SA, Boucher CA, Eagle KA. Usefulness of dipyridamole-thallium scanning for preoperative evaluation of cardiac risk for nonvascular surgery. Am J Cardiol 1992;69:1280–5.

    Article  PubMed  CAS  Google Scholar 

  106. Golden MA, Whittemore AD, Donaldson MC, Mannick JA. Selective evaluation and management of coronary artery disease in patients undergoing repair of abdominal aortic aneurysms. Ann Surg 1990;212:415–23.

    Article  PubMed  CAS  Google Scholar 

  107. Younis L, Stratmann H, Takase B, Byers S, Chaitman BR, Miller DD. Preoperative clinical assessment and dipyridamole thallium-201 scintigraphy for prediction and prevention of cardiac events in patients having major noncardiovascular surgery and known or suspect coronary artery disease. Am J Cardiol 1994;74:311–7.

    Article  PubMed  CAS  Google Scholar 

  108. Mangano DT, London MJ, Tubau JF, Browner WAS, Hollenberg M, Krupski W, et al. Dipyridamole thallium-201 scintigraphy as a preoperative screening test: a reexamination of its predictive potential. Circulation 1991;84:493–502.

    PubMed  CAS  Google Scholar 

  109. Baron JF, Mulder O, Bertrand M, Vicaut E, Barre E, Goodet G, et al. Dipyridamole-thallium scintigraphy and gated radionuclide angiography to assess cardiac risk before abdominal aortic surgery. N Engl J Med 1994;330:663–9.

    Article  PubMed  CAS  Google Scholar 

  110. Bateman TM, O’Keefe JH Jr, Dong VM, Barnhart C, Ligon RW. Coronary angiographic rates after stress single-photon emission computed tomographic scintigraphy. J Nucl Cardiol 1995;2:217–23.

    Article  PubMed  CAS  Google Scholar 

  111. Nallamothu N, Pancholy SB, Lee KR, Heo J, Iskandrian AS. Impact on exercise single-photon emission computed tomographic thallium imaging on patient management and outcome. J Nucl Cardiol 1995;2:334–8.

    Article  PubMed  CAS  Google Scholar 

  112. Steingart RM, Wassertheil-Smoller S, Tobin JN, Wexler J, Budner N. Nuclear exercise testing and the management of coronary artery disease. J Nucl Med 1991;32:753–8.

    PubMed  CAS  Google Scholar 

  113. Hachamovitch R, Berman DS, Kiat H, Bairey-Merz N, Cohen I, Cabicl IC, et al. Gender-related differences in clinical management after exercise nuclear testing. J Am Coll Cardiol 1995;26: 1457–64.

    Article  PubMed  CAS  Google Scholar 

  114. Bateman TM, O’Keefe JH Jr, Dong VM, Barnhart C, Ligon RW. Coronary angiographic rates after stress single-photon emission computed tomography scintigraphy. J Nucl Cardiol 1995;2:217–23.

    Article  PubMed  CAS  Google Scholar 

  115. Wahl JM, Hakki A-H, Iskandrian AS. Prognostic implications of normal exercise thallium-201 images. Arch Intern Med 1985; 145:263–56.

    Article  Google Scholar 

  116. Pamelia FX, Gibson RS, Watson DD, Craddock GB, Sirowathka J, Beller GA. Prognosis with chest pain and normal thallium-201 exercise scintigrams. Am J Cardiol 1985;55:920–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K.A. Prognostic value of myocardial perfusion imaging: State of the art and new developments. J Nucl Cardiol 3, 516–537 (1996). https://doi.org/10.1016/S1071-3581(96)90061-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(96)90061-6

Keywords

Navigation