Skip to main content
Log in

Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography

  • Original Articles
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Although several modeling strategies have been developed and validated for quantification of myocardial blood flow (MBF) from 13N-labeled ammonia positron emission tomographic data, a comparison of noise characteristics of the various techniques in serial studies is lacking.

Methods and Results

Dynamic 13N-labeled ammonia positron emission tomographic imaging was performed at baseline and after pharmacologic stress in (1) single studies of four dogs with concomitant measurement of microsphere blood flow and (2) initial and follow-up studies of eight normal volunteers. Data were obtained from short-axis images for the blood pool and myocardial regions corresponding to the three arterial vascular territories. Indexes of MBF were obtained by four distinct techniques: (1) University of California, Los Angeles, twocompartment model, (2) Michigan two-compartment model, and (3) a one-compartment model with variable blood volume term. Coronary flow reserve (CFR) was measured as the ratio of stress/rest MBF. The estimated standard deviation of the measurement error for the relative change between studies of rest and stress MBF and CFR was determined for each technique. Estimates of MBF from all techniques showed good correlation with microsphere blood flow (r=0.95 to 0.96) in canine myocardium. In human studies, similar mean estimates of MBF were found with all techniques. Techniques 1 and 3 showed the smallest interstudy variability in MBF and CFR. The estimated standard deviations for these techniques were approximately 20%, 30%, and 27% for rest MBF, stress MBF, and CFR, respectively.

Conclusion

Noninvasive quantification of MBF and CFR from dynamic 13N-labeled ammonia positron emission tomography is most reproducible with technique 1 or 3. The ability to account for differences in myocardial partial volume gives preference to technique 3. However, substantial interstudy variability in regional MBF remains, suggesting the importance of procedural factors or real temporal fluctuations in MBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gould KL. Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilation, I: physiologic basis and experimental validation. Am J Cardiol 1978;41:267–8.

    Article  PubMed  CAS  Google Scholar 

  2. Schelbert HR, Wisenberg G, Phelps ME, et al. Noninvasive assessment of coronary stenosis with myocardial perfusion imaging during pharmacologic coronary vasodilation, VI: detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron emission tomography. Am J Cardiol 1982; 49:1197–207.

    Article  PubMed  CAS  Google Scholar 

  3. Schelbert HR. Positron-emission tomography: assessment of myocardial blood flow and metabolism. Circulation 1985;72:IV122–33.

    PubMed  CAS  Google Scholar 

  4. Krivokapich J, Smith G, Huang S, et al. 13N-ammonia myocardial imaging at rest and with exercise in normal volunteers. Circulation 1989;80:1328–37.

    PubMed  CAS  Google Scholar 

  5. Schelbert HR, Phelps ME, Huang SC, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981;63:1259–72.

    PubMed  CAS  Google Scholar 

  6. Nienaber CA, Ratib O, Gambhir SS, et al. A quantitative index of regional blood flow in canine myocardium derived noninvasively with N-13 ammonia and dynamic positron emission tomography. J Am Coll Cardiol 1991;17:260–9.

    PubMed  CAS  Google Scholar 

  7. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990; 15:1032–42.

    PubMed  CAS  Google Scholar 

  8. Bellina CR, Parodi O, Camici P, et al. Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. J Nucl Med 1990;31:1335–43.

    PubMed  CAS  Google Scholar 

  9. Di Carli M, Czernin J, Hob CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–51.

    PubMed  Google Scholar 

  10. Czernin J, Kim A, Dominquez V, Phelps M, Schelbert H. How reproducible are measurements of myocardial blood flow by N-13 ammonia and PET [abstract]? J Nucl Med 1994;35:24P.

    Google Scholar 

  11. Sawada S, Muzik O, Beanlands RSB, Wolfe E, Hutchins GD, Schwaiger M. Interobserver and interstudy variability of myocardial blood flow and flow-reserve measurements with nitrogen 13 ammonia-labeled positron emission tomography. J Nucl Cardiol 1995;2:413–22.

    Article  PubMed  CAS  Google Scholar 

  12. DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole body PET scanner. J Nucl Med 1994;35:1398–406.

    PubMed  CAS  Google Scholar 

  13. Murdock RJ, Cobb FR. Effects of infarcted myocardium on regional blood flow measurements to ischemic regions in canine heart. Circ Res 1980;47:701–9.

    PubMed  Google Scholar 

  14. Turkington TG, Coleman RE, Schubert SF, Ganin A. An evaluation of post-injection transmission measurement in PET. IEEE Trans Nucl Sci 1994;41:1538–44.

    Article  Google Scholar 

  15. Rosenspire KC, Schwaiger M, Mangner TJ, Hutchins GD, Sutorik A, Kuhl DE. Metabolic fate of [13N]ammonia in human and canine blood. J Nucl Med 1990;31:163–7.

    PubMed  CAS  Google Scholar 

  16. Searle SR. Linear models. New York: Wiley & Sons, 1971.

    Google Scholar 

  17. Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med 1992;33:1243–50.

    PubMed  CAS  Google Scholar 

  18. Choi Y, Huang SC, Hawkins RA, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonnia and dynamic PET. J Nucl Med 1993;34:488–97.

    PubMed  CAS  Google Scholar 

  19. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993;34:83–91.

    PubMed  CAS  Google Scholar 

  20. Kuhle WG, Porenta G, Huang SC, et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1992; 86:1004–17.

    PubMed  CAS  Google Scholar 

  21. Choi Y, Huang SC, Hoh CK, Phelps ME, Schetbert HR. Quantification of myocardial blood flow using a two-compartment model and N-13 ammonia PET with model derived partial volume effect correction [abstract]. J Nucl Med 1995;36:175P.

    Google Scholar 

  22. Shah A, Schelbert HR, Schwaiger M, et al. Measurement of regional myocardial blood flow with N-13 ammonia and positron-emisson tomography in intact dogs. J Am Coll Cardiol 1985;5: 92–100.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson R, Wyche K, Christensen B, Zimmer S, Laxson D. Effects of adenosine on human coronary arterial circulation. Circulation 1990;82:1595–606.

    PubMed  CAS  Google Scholar 

  24. McGinn A, White C, Wilson R. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure, and ventricular preload. Circulation 1990;81:1319–30.

    PubMed  CAS  Google Scholar 

  25. Berry JB, Baker JA, Pieper KS, Hanson MW, Hoffman JM, Coleman RE. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med 1991;32:1518–25.

    PubMed  CAS  Google Scholar 

  26. Laubenbacher C, Rothley J, Sitomer J, et al. An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localization of coronary artery disease using nitrogen-13-ammonia. J Nucl Med 1993;34:968–78.

    PubMed  CAS  Google Scholar 

  27. Porenta G, Czernin J, Huang SC, Kuhle W, Brunken RC, Schelbert HR. Dynamic and gated PET N-13 ammonia imaging confirms inhomogeneous myocardial tracer retention but homogeneous perfusion in normal subjects [abstract]. J Nucl Med 1993; 34:35P.

    Google Scholar 

  28. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989;14:639–52.

    PubMed  CAS  Google Scholar 

  29. Chan SY, Brunken RC, Czernin J, et al. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol 1992;20:979–85.

    PubMed  CAS  Google Scholar 

  30. Press WH, Flannery BP, Teukolsky SA, Vettering SA. Numerical recipes in C. Cambridge: Cambridge University Press, 1988.

    Google Scholar 

  31. Marquardt D. An algorithm for the least-squares estimation on non-linear parameters. J Soc Indust Appl Math 1963;11:431–41.

    Article  Google Scholar 

  32. Smith G, Huang S, Neinaber C, Krivokapich J, Schelbert H. Noninvasive quantification of regional myocardial blood flow with N-13 ammonia and dynamic PET [abstract]. J Nucl Med 1988; 29:288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeGrado, T.R., Hanson, M.W., Turkington, T.G. et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol 3, 494–507 (1996). https://doi.org/10.1016/S1071-3581(96)90059-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(96)90059-8

Key Words

Navigation