Skip to main content
Log in

Myocardial perfusion spect protocols

  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Juni JE, Van Train K. Atlas of artifacts in 201Tl SPECT cardiac perfusion imaging. In: Van Nostrand D, ed. Selected Atlases of Cardiovascular Nuclear Medicine. New York: Springer-Verlag, 1993:29–50.

    Google Scholar 

  2. Segall GM, Davis MJ. Prone versus supine thallium myocardial SPECT: a method to decrease artifactural inferior wall defects. J Nucl Med 1989;30:548–55.

    PubMed  CAS  Google Scholar 

  3. Kiat H, Van Train KF, Friedman JD, et al. Quantitative stress-redistribution thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med 1992;33:1509–15.

    PubMed  CAS  Google Scholar 

  4. Galt JR, Germano G. Advances in instrumentation for cardiac SPECT. In: DePuey EG, Berman DS, Garcia EV, editors. Cardiac SPECT imaging. New York, New York: Raven Press, 1994:91–102.

    Google Scholar 

  5. Maniawski PJ, Morgan HT, Wackers FJ, et al. Orbit-related variation in spatial resolution as a source of artifactual defects in thallium-201 SPECT. J Nucl Med 1991;32:871–5.

    PubMed  CAS  Google Scholar 

  6. Faber T, Akers MS, Peshock RM, et al. Three dimensional motion and perfusion quantification in gated single photon emission computed tomograms. J Nucl Med 1991;32:2311–7.

    PubMed  CAS  Google Scholar 

  7. DePuey EG, Nichols K, Dobrinsky C, et al. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993;34:1871–6.

    PubMed  CAS  Google Scholar 

  8. Germano G, Kiat H, Kavanagh PB, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–47.

    PubMed  CAS  Google Scholar 

  9. Greer KL, Jaszczak RJ, Coleman RE. An overview of a camera-based SPECT system. Medical Physical 1982;9:455–63.

    Article  CAS  Google Scholar 

  10. Nowak DJ, Gullberg GT, Eisner RL, et al. An investigation to determine uniformity requirements for rotating gamma camera tomography. J Nucl Med 1982;23:52–3.

    Google Scholar 

  11. Rogers WL, Gullberg GT, Eisner RL, et al. Field-flood requirements for emission tomography with an Anger camera. J Nucl Med 1982;23:162–8.

    PubMed  CAS  Google Scholar 

  12. Friedman J, Berman DS, Van Train KF, et al. Patient motion in thallium-201 myocardial SPECT imaging: an easily identified frequent source of artifactual defect. Clin Nucl Med 1988;13:321–4.

    Article  PubMed  CAS  Google Scholar 

  13. Friedman J, Van Train KF, Maddahi J, et al. “Upward creep” of the heart: a frequent source of false positive perfusion defects on thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718–22.

    PubMed  CAS  Google Scholar 

  14. Cooper JA, Neumman PH, McCandless BK, et al. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;13:1566–71.

    Google Scholar 

  15. Eisner RL, Chruchwell A, Noever T, et al. Quantitative analysis of the tomographic thallium-201 myocardial bullseye display: critical role of correcting for patient motion. 1988;29:91–7.

    CAS  Google Scholar 

  16. Galt JR, Hise HL, Garcia EV, et al. Filtering in frequency space. J Nucl Med Tech 1986;14: 3:153–60.

    Google Scholar 

  17. King MA, Glick SJ, Penney BC, et al. Interactive visual optimization of SPECT prereconstruction filtering. J Nucl Med 1987;28:1192–8.

    PubMed  CAS  Google Scholar 

  18. King MA, Schwinger RB, Doherty PW, et al. Two-dimensional filtering of SPECT images using the Metz and Weiner filters. J Nucl Med 1984;25:1234–40.

    PubMed  CAS  Google Scholar 

  19. Brooks RA, DiChiro G. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 1976;21:689–732.

    Article  PubMed  CAS  Google Scholar 

  20. Burow RD, Pond M, Schaffer AW, et al. Circumferential profiles: a new method for computer analysis of thallium-201 myocardial perfusion images. J Nucl Med 1979;20:771–7.

    PubMed  CAS  Google Scholar 

  21. DePasquale E, Nody A, DePuey EG, et al. Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 1988;77:316.

    PubMed  CAS  Google Scholar 

  22. Garcia EV, Van Train K, Maddahi J. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 1985;26:17.

    PubMed  CAS  Google Scholar 

  23. Mahmarian JJ, Boyce TM, Goldberg RK, et al. Quantitative exercise thallium-201 single photon emission computed tomography for the enhanced diagnosis of ischemic heart disease. J Am Coll Cardiol 1990;15:318–29.

    PubMed  CAS  Google Scholar 

  24. Gibbons RJ, Verani MS, Behrenbeck T, et al. Feasibility of tomographic Tc-99m-hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of acute treatment in myocardial infarction. Circulation 1989;80:1277–86.

    PubMed  CAS  Google Scholar 

  25. Nuyts J, Mortelmans L, Suetens P, et al. Model-based quantification of myocardial perfusion images from SPECT. J Nucl Med 1989;30:1992–2001.

    PubMed  CAS  Google Scholar 

  26. Garcia EV, Cooke CD, Van Train KF et al. Technical aspects of myocardial SPECT imaging with Tc-99m sestamibi. Am J Cardiol 1990;66:23E-31E.

    Article  PubMed  CAS  Google Scholar 

  27. Caldwell J, Williams DL, Harp GD, et al. Quantitation of size of relative myocardial perfusion defect by single-photon emission computed tomography. Circulation 1984;70:1048–56.

    PubMed  CAS  Google Scholar 

  28. Maddahi J, Garcia EV, Berman DS, et al. Improved non-invasive assessment of CAD by quantitative analysis of regional stress myocardial distribution and washout of thallium-201. Circulation 1981;64:924–35.

    PubMed  CAS  Google Scholar 

  29. Van Train K, Areeda J, Garcia EV, et al. Quantitative same-day rest stress technetium-99m-Sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993;34:1494–502.

    PubMed  Google Scholar 

  30. Van Train K, Maddahi J, Berman DS, et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 1990;31:1168–79.

    PubMed  Google Scholar 

  31. Van Train K, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress Technetium-99m-Sestamibi myocardial tomograms. J Nucl Med 1994;35:609–18.

    PubMed  Google Scholar 

  32. Klein JL, Garcia EV, DePuey EG, et al. Reversibility bullseye: a new polar Bull's-eye map to quantify reversibility of stress induced SPECT-Tl-201 myocardial perfusion defects J Nucl Med 1990;31:1240–6.

    PubMed  CAS  Google Scholar 

  33. Chouraqui P, Rodrigues E, Berman DS, et al. Significance of dipyridamole induced transient dilation of the left ventricle during thallium-201 scintigraphy in suspected coronary artery disease. Am J Cardiol 1990;66:689–94.

    Article  PubMed  CAS  Google Scholar 

  34. Levy R, Berman DS, Garcia EV, et al. Analysis of the degree of pulmonary thallium washout after exercise in patient's with coronary artery disease. J Am Coll Cardiol 1983;2:719.

    PubMed  CAS  Google Scholar 

  35. Berman DS, Kiat H, Wang FP, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual isotope myocardial perfusion SPECT: a clinical validation study. J Am Coll Cardiol 1993;22:1455–64.

    PubMed  CAS  Google Scholar 

  36. Berman DS, Kiat H, Van Train K, et al. Tc-sestamibi imaging in the assessment of chronic coronary artery disease. Semin Nucl Medicine 1991;21:190–212.

    Article  CAS  Google Scholar 

  37. Dilsizian V, Perrone-Firaldi P, Arrighl JA, et al. Concordance and discordance between stress-redistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium. Circulation 1993;88:941–52.

    PubMed  CAS  Google Scholar 

  38. Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988;12:1456–63.

    PubMed  CAS  Google Scholar 

  39. Akasaka T, Yoshikawa J, Hozumi T, Takagi T, Okura H. Phasic coronary flow velocity pattern of the right coronary artery in patients with pulmonary hypertension. Circulation 1995;92:SI-325.

    Google Scholar 

  40. Vlahakes GJ, Turley K, Hoffman JIE. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 1981;63:87–94.

    PubMed  CAS  Google Scholar 

  41. Schulman DS, Biondi JW, Matthay RA, Barash PG, Zaret BL, Soufer R. Effect of positive end-expiratory pressure on right ventricular performance: importance of baseline right ventricular function. Am J Med 1988;84:57–67.

    Article  PubMed  CAS  Google Scholar 

  42. Schulman DS, Biondi JW, Zohgbi S, Zaret BL, Soufer R. Coronary flow limits right ventricular performance during positive end-expiratory pressure. Am Rev Respir Dis 1990;141:1531–7.

    PubMed  CAS  Google Scholar 

  43. Bove AA, Santamore WP. Ventricular interdependence. Prog Cardiovasc Dis 1981;23:365–88.

    Article  PubMed  CAS  Google Scholar 

  44. Schulman DS, Biondi JW, Matthay RA, Barash PG, Zaret BL, Soufer R. Differing responses in ventricular filling, loading and volumes during positive end-expiratory pressure. Am J Cardiol 1989;64:772–7.

    Article  PubMed  CAS  Google Scholar 

  45. Santamore WP, Constantinescu M, Vinten-Johansen J, Johnston WE, Little WC. Alterations in left ventricular compliance due to changes in right ventricular volume, pressure and compliance. Cardiovasc Res 1988;22:768–76.

    Article  PubMed  CAS  Google Scholar 

  46. Brinker JA, Weiss JL, Lappe DL, et al. Leftward septal displacement during right ventricular loading in man. Circulation 1980; 61:626–33.

    PubMed  CAS  Google Scholar 

  47. Schulman DS, Biondi JW, Zohgbi S, Zaret BL, Soufer R. Left ventricular diastolic function during positive end-expiratory pressure: impact of right ventricular ischemia. Am Rev Respir Dis 1992;145:515–21.

    PubMed  CAS  Google Scholar 

  48. Santamore WP, Lynch PR, Heckman JL, Bove AA, Meier GD. Left ventricular effects on right ventricular developed pressure. J Appl Physiol 1976;41:925–30.

    PubMed  CAS  Google Scholar 

  49. Woodward JC, Chow E, Farrar DJ. Isolated ventricular systolic interaction during transient reductions in left ventricular pressure. Circ Res 1992;70:944–51.

    Google Scholar 

  50. Feneley MP, Gavaghan TP, Baron DW, et al. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation 1985;71:473–80.

    PubMed  CAS  Google Scholar 

  51. Damiano RJ Jr, La Follette P Jr, Cox JL, et al. Significant left ventricular contribution to right ventricular systolic function. Am J Physiol 1991;261:1514–24.

    Google Scholar 

  52. Moser KM, Peterson K, Dembitsky W, et al. Thromboendarterectomy for chronic, major-vessel thromboembolic pulmonary hypertension. Ann Intern Med 1987;107:560–5.

    PubMed  CAS  Google Scholar 

  53. Pasque MK, Trulock EP, Kaiser LR, Cooper JD. Single-lung transplantation for pulmonary hypertension: three-month hemodynamic follow-up. Circulation 1991;84:2275–9.

    PubMed  CAS  Google Scholar 

  54. Brent BN, Berger HJ, Matthay RA, Mahler D, Pytlik L, Zaret BL. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study. Am J Cardiol 1982;50:255–62.

    Article  PubMed  CAS  Google Scholar 

  55. Matthay RA, Berger HJ, Davies RA, et al. Right and left ventricular exercise performance in chronic obstructive pulmonary disease: radionuclide Assessment. Ann Intern Med 1980;93: 234–9.

    PubMed  CAS  Google Scholar 

  56. Mahler DA, Brent BN, Loke J, Zaret BL, Matthay RA. Right ventricular performance and central circulatory hemodynamics during upright exercise in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1984;130:722–9.

    PubMed  CAS  Google Scholar 

  57. Lazar JM, Flores AR, Grandis DG, Orie JE, Schulman DS. Effects of chronic right ventricular pressure overload on left ventricular diastolic function. Am J Cardiol 1993;72:1179–82.

    Article  PubMed  CAS  Google Scholar 

  58. McIntyre K, Sasahara A. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol 1971;28:288–94.

    Article  PubMed  CAS  Google Scholar 

  59. McIntyre K, Sasahara A. Determinants of right ventricular function and hemodynamics after pulmonary embolism. Chest 1974; 65:534–43.

    Article  PubMed  CAS  Google Scholar 

  60. Jardin F, Dubourg O, Gueret P, Delorme G, Bourdarias JP. Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol 1987;10: 1201–6.

    PubMed  CAS  Google Scholar 

  61. Molloy WD, Lee KY, Schick GU, Prewitt RM. Treatment of shock in a canine model of pulmonary embolism. Am Rev Respir Dis 1984;129:135–42.

    Google Scholar 

  62. Belenkie I, Dani R, Smith ER, Tyberg JV. Ventricular interaction during experimental pulmonary embolism. Circulation 1988;78: 761–8.

    PubMed  CAS  Google Scholar 

  63. Belenkie I, Dani R, Smith ER, Tyberg JV. Effects of volume loading during experimental acute pulmonary embolism. Circulation 1989;80:178–88.

    PubMed  CAS  Google Scholar 

  64. Come PC, Ducksoo K, Parker JA, goldhaber SZ, Braunwald E, Markis JE. Early reversal of right ventricular dysfunction in patients with acute pulmonary embolism after treatment with intravenous tissue plasminogen activator. J Am Coll Cardiol 1987;10:971–8.

    Article  PubMed  CAS  Google Scholar 

  65. Lorell B, Leinbach RC, Pohost GM, et al. Right ventricular infarction: clinical diagnosis and differentiation from cardiac tamponade and pericardial constriction. Am J Cardiol 1979;43: 465–71.

    Article  PubMed  CAS  Google Scholar 

  66. Reduto LA, Berger HJ, Cohen LS, Gottschalk A, Zaret BL. Sequential radionuclide assessment of left and right ventricular performance after acute transmural myocardial infarction. Ann Intern Med 1978;89:441–7.

    PubMed  CAS  Google Scholar 

  67. Sharpe DN, Botvinick EH, Shames DM, et al. The noninvasive diagnosis of right ventricular infarction. Circulation 1977;57:483–90.

    Google Scholar 

  68. Steele P, Kirch D, Ellis J, Vogel R, Battock D. Prompt return to normal of depressed right ventricular ejection fraction in acute inferior infarction. Br Heart J 1977;39:1319–23.

    Article  PubMed  CAS  Google Scholar 

  69. Braat SH, Brugada P, De Zwaan C, Den Dulk K, Wellens HJJ. Right and left ventricular ejection fraction in acute inferior wall infarction with or without ST segment elevation in lead V4R. J Am Coll Cardiol 1984;4:940–4.

    Article  PubMed  CAS  Google Scholar 

  70. Shah PK, Maddahi J, Berman DS, Pichler M, Swan HJC. Scintigraphically detected predominant right ventricular dysfunction in acute myocardial infarction: clinical and hemodynamic correlates and implications for therapy and prognosis. J Am Coll Cardiol 1985;6:1264–72.

    PubMed  CAS  Google Scholar 

  71. Starling MR, Dell'Italia LJ, Chudhuri TK, Boros BL, O'Rourke RA. First transit and equilibrium radionuclide angiography in patients with inferior myocardial infarction: criteria for the diagnosis of associated hemodynamically significant right ventricular infarction. J Am Coll Cardiol 1984;4:923–30.

    Article  PubMed  CAS  Google Scholar 

  72. Dell'Italia LJ, Starling MR, Crawford MH, Boros BL, Chaudhuri TK, O'Rourke RA. Right ventricular infarction: identification by hemodynamic measurements before and after volume loading and correlation with noninvasive techniques. J Am Coll Cardiol 1984; 4:931–9.

    Article  PubMed  Google Scholar 

  73. Laster SB, Ohnishi KY, Saffitz JE, Goldstein JA. Effects of reperfusion on ischemic right ventricular dysfunction: disparate mechanisms of benefit related to duration of ischemia. Circulation 1994;90:1398–409.

    PubMed  CAS  Google Scholar 

  74. Verani MS, Tortoledo PE, Batty JW, Raizner AE. Effect of coronary artery recanalization on right ventricular function in patients with acute myocardial infarction. J Am Coll Cardiol 1985;5:1029–35.

    Article  PubMed  CAS  Google Scholar 

  75. Schuler G, Hofmann M, Schwarz F, et al. Effect of successful thrombolytic therapy on right ventricular function in acute inferior wall myocardial infarction. Am J Cardiol 1984;54:951–7.

    Article  PubMed  CAS  Google Scholar 

  76. Berger PB, Ruocco NA, Ryan TJ, et al. Frequency and significance of right ventricular dysfunction during inferior wall left ventricular myocardial infarction treated with thrombolytic therapy (results from the Thrombolysis in Myocardial Infarction [TIMI] II Trial). Am J Cardiol 1993;71:1148–52.

    Article  PubMed  CAS  Google Scholar 

  77. Goto Y, Yamamoto J, Saito M, et al. Effects of right ventricular ischemia on left ventricular geometry and the end-diastolic pressure-volume relationship in the dog. Circulation 1985;72:1104–14.

    PubMed  CAS  Google Scholar 

  78. Goldstein JA, Vlahakes GJ, Berrier ED, et al. The role of right ventricular systolic dysfunction and elevated intrapericardial pressure in the genesis of low output in experimental right ventricular infarction. Circulation 1982;65:513–22.

    PubMed  CAS  Google Scholar 

  79. Goldstein JA, Tweddell JS, Barzilai B, Yagi Y, Jaffe AS. Right atrial ischemia exacerbates hemodynamic compromise associated with experimental right ventricular dysfunction. J Am Coll Cardiol 1991;18:1564–72.

    Article  PubMed  CAS  Google Scholar 

  80. Goldstein JA, Tweddell JS, Barzilai B, Yagi Y, Jaffe AS, Cox JL. Importance of left ventricular function and systolic ventricular interaction to right ventricular performance during acute right heart ischemia. J Am Coll Cardiol 1992;19:704–11.

    Article  PubMed  CAS  Google Scholar 

  81. Goldstein JA, Barzilai B, Rosamond TL, Eisenberg PR, Jaffe AS. Determinants of hemodynamic compromise with severe right ventricular infarction. Circulation 1990;82:359–68.

    PubMed  CAS  Google Scholar 

  82. Dell'Italia LJ, Starling MR, Blumhardt R, Lasher JC, O'Rourke RA. Comparative effects of volume loading, dobutamine, and nitroprusside in patients with predominant right ventricular infarction. Circulation 1985;72:1327–35.

    PubMed  Google Scholar 

  83. Steele P, Kirch D, LeFree M, Battock D. Measurement of right and left ventricular ejection fractions by radionuclide angiocardiography in coronary artery disease. Chest 1976;70:51–6.

    Article  PubMed  CAS  Google Scholar 

  84. Morrsion D, Sorensen S, Caldwell J, et al. The normal right ventricular response to supine exercise. Chest 1982;82:686–91.

    Article  Google Scholar 

  85. Berger HJ, Johnstone DE, Sands JM, Gottschalk A, Zaret BL. Response of right ventricular ejection fraction to upright bicycle exercise in coronary artery disease. Circulation 1979;60:1292–9.

    PubMed  CAS  Google Scholar 

  86. Johnson LL, McCarthy DM, Sciacca RR, Cannon PJ. Right ventricular ejection fraction during exercise in patients with coronary artery disease. Circulation 1979;60:1284–91.

    PubMed  CAS  Google Scholar 

  87. Neglia D, Paroki O, Marzullo P, et al. Behavior of right and left ventricles during episodes of variant angina in relation to the site of coronary vasospasm. Circulation 1990;81:567–77.

    PubMed  CAS  Google Scholar 

  88. Verani MS, Guidry GW, Mahmarian JJ, et al. Effects of acute, transient coronary occlusion on global and regional right ventricular function in humans. J Am Coll Cardiol 1992;20:1490–7.

    PubMed  CAS  Google Scholar 

  89. Lewis JF, Webber JD, Sutton LL, Chesoni S, Curry CL. Discordance in degree of right and left ventricular dilation in patients with dilated cardiomyopathy: recognition and clinical implications. J Am Coll Cardiol 1993;21:649–54.

    Article  PubMed  CAS  Google Scholar 

  90. Schulman DS, Grandis DJ, Flores AR. Relationship between hemodynamics and right ventricular function in patients with cardiomyopathy: important role of tricuspid regurgitation. Chest 1995;107:14–9.

    Article  PubMed  CAS  Google Scholar 

  91. Kimichi A, Ellrodt G, Berman DS, Riedinger MS, Swan HJC, Murata GH. Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 1984;??:945–51.

    Google Scholar 

  92. Parker MM, McCarthy KE, Ognibene FP, Parrillo JE. Right ventricular dysfunction and dilation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 1990;97:126–31.

    Article  PubMed  CAS  Google Scholar 

  93. Iskandrian AS, Hakki A, Ren J, et al. Correlation among right ventricular preload, afterload and ejection fraction in mitral valve disease: radionuclide, echo-cardiographic and hemodynamic evaluation. J Am Coll Cardiol 1984;3:1403–11.

    Article  PubMed  CAS  Google Scholar 

  94. Konstam MA, Idoine J, Wynne J, et al. Right ventricular function in adults with pulmonary hypertension with and without atrial septal defect. Am J Cardiol 1983;51:1144–8.

    Article  PubMed  CAS  Google Scholar 

  95. Hung J, Uren RF, Richmond DR, Kelly DT. The mechanism of abnormal septal motion in atrial septal defect: pre- and postoperative study by radionuclide ventriculography in adults. Circulation 1981;63:142–8.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myocardial perfusion spect protocols. J Nucl Cardiol 3, G34–G46 (1996). https://doi.org/10.1016/S1071-3581(96)90051-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(96)90051-3

Keywords

Navigation