Skip to main content
Log in

Scintigraphic evaluation of cardiac autonomic innervation

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Alterations in cardiac autonomic neuronal function have become the focus of intense research in various cardiovascular diseases. Both single-photon emission tomography (SPECT) and the positron emission tomography (PET) imaging techniques in combination with radiolabled neurotransmitters and receptor ligands have become available for the scintigraphic visualization of presynaptic and postsynaptic neuronal function. Several clinical studies have shown changes in tracer distribution in different clinical conditions, such as ischemic heart disease, congestive heart failure, malignant arrhythmias, heart transplantation, and in patients with diabetes. In patients with congestive heart failure, previous in vitro investigations have concentrated on the postsynaptic level of the sympathetic innervation. However, alterations in presynaptic nerve function have been demonstrated with scintigraphic investigations by decreased presynaptic tracer retention. Moreover, correlation between scintigraphic findings and clinical outcome was shown in patients with heart failure, providing important prognostic information superior to conventional risk assessment. In conclusion, scintigraphic evaluation by SPECT and PET allows functional characterization of cardiac presynaptic and postsynaptic neurons. Regional tracer uptake can be used as an index for the integrity of innervation in various diseases. Newer tracer approaches may allow the noninvasive quantification of neuronal function by PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Randall WC, Ardell JL. Functional anatomy of the cardiac efferent innervation. In: Kulbertus HE, Franck G, eds. Neurocardiology. New York: Futura Publishing, 1988:3–24.

    Google Scholar 

  2. Angelakos ET, King MP, Millard RW. Regional distribution of catecholamines in the heart of various species. Ann NY Acad Sci 1969;156:219–40.

    Article  PubMed  CAS  Google Scholar 

  3. Zipes DP, Inoue H. Autonomic neural control of cardiac excitable properties. In Kulbertus HE, Franck G, eds. Neurocardiology. New York: Futura Publisher, 1988:787–96.

    Google Scholar 

  4. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate and functions. Physiol Rev 1990;70:963–85.

    PubMed  CAS  Google Scholar 

  5. Schömig A. Catecholamines in myocardial ischemia: systemic and cardiac release. Circulation 1990;82(suppl):II13–22.

    PubMed  Google Scholar 

  6. Russ H, Giese M, Sonna J, Schömig E. The extraneuronal transport mechanism for noradrenaline (uptake 2) avidly transports 1-methyl-phenylpyridinium (MPP+). Naunyn Schmiedebergs Arch Pharmacol 1992;346:158–65.

    Article  PubMed  CAS  Google Scholar 

  7. Ducis I. The high affinity choline uptake system. In Whittaker VP, ed. The cholinergic synapse. New York: Springer Verlag, 1988: 409–45.

    Google Scholar 

  8. Zimmermann H. Cholinergic synaptic vesicles. In Whittaker VP, ed. The cholinergic synapse. New York: Springer Verlag, 1988: 350–82.

    Google Scholar 

  9. Kubo T, et al. Cloning, sequencing and expression of the complementary DNA encoding the muscarinic acetylcholine receptor. Nature 1988;323:411–6.

    Article  Google Scholar 

  10. Hall ZW. Multiple forms of acetylcholinesterase and their distribution in the endplate and non-endplate regions of rat diaphragm muscle. J Neurobiol 1973;4:343–61.

    Article  PubMed  CAS  Google Scholar 

  11. Brodde OE, Zerkowsky HR, Borst HG, Maier W, Michel MC. Drug- and disease-induced changes in human cardiac β1- and β2-adrenoceptors. Eur Heart J 1989;10(suppl):38–44.

    PubMed  Google Scholar 

  12. Böhm M, Diet F, Feiler G, Kemkes B, Erdmann E α-Adrenoceptors and α-adrenoceptor-mediated positive inotropic effects in failing human myocardium. J Cardiovasc Pharmacol 1988;12:357–64.

    Article  PubMed  Google Scholar 

  13. Feigl EO. Reflex parasympathetic coronary vasodilatation elicited from cardiac receptors in the dog. Circ Res 1975;37:175–82.

    PubMed  CAS  Google Scholar 

  14. Kent KM, Epstein SE, Cooper T, Jacobowitz DM. Cholinergic innervation of the canine and human ventricular conduction system. Circulation 1974;50:948–55.

    PubMed  CAS  Google Scholar 

  15. Cohn JN, Levine B, Olivary MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311:819–23.

    PubMed  CAS  Google Scholar 

  16. Amorim DS, Olsen EGJ. Assessment of heart neurons in dilated (congestive) cardiomyopathy. Br Heart J 1982;47:11–8.

    Article  PubMed  CAS  Google Scholar 

  17. Chidsey CA, Sonnenblick EH, Morrow AG, Braunwald E. Norepinephrine stores and contractile force of papillary muscle from the failing human heart. Circulation 1966;33:43–51.

    PubMed  CAS  Google Scholar 

  18. Petch MC, Nayler WG. Uptake of catecholamines by human cardiac muscle in vitro. Br Heart J 1979;41:336–9.

    Article  PubMed  CAS  Google Scholar 

  19. Böhm M, LaRosee K, Schwinger RHG, Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 1995;25:146–53.

    Article  PubMed  Google Scholar 

  20. Muntz KH, Zhao M, Miller JC. Downregulation of myocardial β-adrenergic receptors: receptor subtype specificity. Circ Res 1994;74:369–75.

    PubMed  CAS  Google Scholar 

  21. CIBIS Investigator and Committee. A randomized trial of β-blockade in heart failure: the Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation 1994;90:1765–73.

    Google Scholar 

  22. Corr PB, Gillis RA. Autonomic neural influences on the dysrhythmias resulting from myocardial infarction. Circ Res 1978;43:1–9.

    PubMed  CAS  Google Scholar 

  23. Herre JM, Wetstein L, Lin YL, Mills AS, Dae MW, Thames MD. Effect of transmural versus nontransmural myocardial infarction on inducibility of ventricular arrhythmias during sympathetic stimulation in dogs. J Am Coll Cardiol 1988;2:413–21.

    Google Scholar 

  24. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation 1987;75:877–87.

    PubMed  CAS  Google Scholar 

  25. Schwartz PJ, Zaza A, Pala M, Locati E, Beria G, Zanchetti A. Baroreflex sensitivity and its evolution during the first year after myocardial infarction. J Am Coll Cardiol 1988;12:629–36.

    PubMed  CAS  Google Scholar 

  26. Schwartz PJ, Periti M, Malliani A. Fundamentals of clinical cardiology. Am Heart J 1975;89:378–90.

    Article  PubMed  CAS  Google Scholar 

  27. Leclercq JF, Coumel P. Characteristics, prognosis and treatment of the ventricular arrhythmias of right ventricular dysplasia. Eur Heart J 1989;10(suppl):61–7.

    PubMed  Google Scholar 

  28. Banner N, Patel N, Cox A, Patton H, Lachno D, Yacoub M. Altered sympathoadrenal response to dynamic exercise in cardiac transplant recipients. Cardiovasc Res 1989;23:965–72.

    Article  PubMed  CAS  Google Scholar 

  29. Mohanty P, Sowers J, Thames M, Beck F, Kawaguchi A, Lower R. Myocardial norepinephrine, epinephrine and dopamine concentration after cardiac autotransplantation in dogs. J Am Coll Cardiol 1986;7:419–24.

    PubMed  CAS  Google Scholar 

  30. Dong E, Hurley E, Lower R, Shumway N. Performance of the heart after two years after autotransplantation. Surgery 1964;56: 270–3.

    PubMed  Google Scholar 

  31. Wieland DM, Wu J-I, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with (I-131) iodobenzylguanidine. J Nucl Med 1980;21:349–53.

    PubMed  CAS  Google Scholar 

  32. DeGrado TR, Zalutsky MR, Vaidyanathan G. Uptake mechanisms of meta-[123I]iodobenzylguanitidine in the isolated rat heart. Nucl Med Biol 1995;22:1–12.

    Article  PubMed  CAS  Google Scholar 

  33. Nakajo M, Shimabukuro K, Yoshimura H, et al. Iodine-131-metaiodobenzylguanidine intra- and extra-vesicular accumulation in the rat heart. J Nucl Med 1986;27:84–9.

    PubMed  CAS  Google Scholar 

  34. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 1995;36:644–50.

    PubMed  CAS  Google Scholar 

  35. Valette H, Loc'h C, Mardon K, et al. Bromine-76-metabromobenzylguanidine: a PET radiotracer for mapping sympathetic nerves of the heart. J Nucl Med 1993;34:1739–44.

    PubMed  CAS  Google Scholar 

  36. Chakraborty PK, Gildersleeve DL, Jewett DM, et al. High yield synthesis of high specific activity R-(-)-[11C]epinephrine for routine PET studies in humans. Nucl Med Biol 1993;20:939–44.

    Article  PubMed  CAS  Google Scholar 

  37. Ding YS, Fowler JS, Dewey SL, et al. Comparison of high specific activity (-) and (+)-6-[18F]fluoronorepinephrine and 6-[18F]fluorodopamine in baboons: heart uptake, metabolism and the effect of desipramine. J Nucl Med 1993;34:619–29.

    PubMed  CAS  Google Scholar 

  38. Nguyen NTB, DeGrado TR, Chakraborty P, Stafford K, Wieland D, Schwaiger M. Evaluation of C-11 epinephrine in the isolated working rat heart [Abstract]. J Nucl Med 1993;34:45P.

    Google Scholar 

  39. Porter CC, Torchiana ML, Totaro JA, Stone CA. Displacement of norepinephrine from the rat heart by C14-metaraminol. Biochem Pharmacol 1967;16:2117–24.

    Article  PubMed  CAS  Google Scholar 

  40. Wieland DM, Rosenspire KC, Hutchins GD, Schwaiger M. Validation of y-[18F]fluorometaraminol (FMR) for positron tomography [Abstract]. Circulation 1988;78(suppl):598.

    Google Scholar 

  41. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-metahydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 1993;34:1287–93.

    PubMed  CAS  Google Scholar 

  42. Wieland DM, Hutchins GD. Neurocardiology. In Kuhl DE, ed. In vivo imaging of neurotransmitter functions in brain, heart and tumors. Washington DC: American College of Physicians, 1991: 301–27.

    Google Scholar 

  43. Rogers GA, Parson SM, Anderson DC, et al. Synthesis, in vitro acetylcholine-storage blocking activities, and biological properties of derivates and analogues of trans-2-(4-phenylpiperidino) cyclohexanol (vesamicol). J Med Chem 1989;32:1217–30.

    Article  PubMed  CAS  Google Scholar 

  44. Jung YW, VanDort ME, Gildersleeve DL, Wieland DM. A radiotracer for mapping cholinergic neurons in the brain. J Med Chem 1990;33:2065–8.

    Article  PubMed  CAS  Google Scholar 

  45. DeGrado TR, Mulholland GK, Wieland DM, Schwaiger M. Evaluation of (-) [18F]fluoroethoxybenzovesamicol as a new PET tracer of cholinergic neurons on the heart. Nucl Med Biol 1994;21:189–95.

    Article  PubMed  CAS  Google Scholar 

  46. Lund DD, Schmid PG, Kelley SE, Corry RJ, Roskoski R. Choline acetyltransferase activity in the rat heart after transplantation. Am J Physiol 1978;235:H367–71.

    PubMed  CAS  Google Scholar 

  47. Hughes B, Marshall DR, Sobel BE, Bergmann SR. Characterization of beta-adrenoceptors in vivo with iodine-131 pindolol and gamma scintigraphy. J Nucl Med 1986;27:660–7.

    PubMed  CAS  Google Scholar 

  48. Gibson RE, Weckstein DJ, Jagoda EM, Rzeszotarski WJ, Reba RC, Eckelman WC. The characteristics of I-125 4-IQNB and H-3 QNB in vivo and in vitro. J Nucl Med 1984;25:214–22.

    PubMed  CAS  Google Scholar 

  49. Hicks RJ, Kassiou M, Eu P, et al. Iodine-123 N-methyl-4-iododexetimide: a new radioligand for single-photon emission tomographic imaging of myocardial muscarinic receptors. Eur J Nucl Med 1995;22:339–45.

    Article  PubMed  CAS  Google Scholar 

  50. Law MP. Demonstration of suitability of CGP 12177 for in vivo studies of beta-adrenoceptors. Br J Pharmacol 1993;109:1101–9.

    PubMed  CAS  Google Scholar 

  51. Ehrin E, Luthra SK, Crouzel C, Pike WW. Preparation of carbon-11 labeled prazosin, a potent and selective α1-adrenoceptor antagonist. J Label Compounds Radiopharm 1988;25:177–83.

    Article  CAS  Google Scholar 

  52. Delforge J, Syrota A, Lancon J-P, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 1991;32:739–58.

    PubMed  CAS  Google Scholar 

  53. Delforge J, Janier M, Syrota A, et al. Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart. Circulation 1990;82:1494–504.

    PubMed  CAS  Google Scholar 

  54. Delforge J, Le Guludec D, Syrota A, et al. Quantification of myocardial muscarinic receptors with PET in humans. J Nucl Med 1993;34:981–91.

    PubMed  CAS  Google Scholar 

  55. Vatner DE, Vatner SF, Fujii AM, Homcy CJ. Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest 1985;76:2259–64.

    Article  PubMed  CAS  Google Scholar 

  56. Buxton I, Rozansky D, Brunton L, Motulsky H. Effect of Na+ on the muscarinic receptors of the rat ventricular myocytes. J Cardiovasc Pharmacol 1985;7:476–81.

    Article  PubMed  CAS  Google Scholar 

  57. Rabinovitch MA, Rose CP, Rouleau JL, et al. Metaiodobenzylguanidine [123I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-over-load heart failure. Circ Res 1987;61:797–804.

    PubMed  CAS  Google Scholar 

  58. Takatsu H, Uno Y, Fujiwara H. Modulation of left ventricular iodine-125-MIBG accumulation in cardiomyopathic Syrian hamsters using the renin-angiotensin system. J Nucl Med 1995;36:1055–61.

    PubMed  CAS  Google Scholar 

  59. Henderson EB, Kahn JK, Corbett JR, et al. Abnormal I-123 metaiodobenzylguanetidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 1988;78:1192–9.

    PubMed  CAS  Google Scholar 

  60. Rabinovitch MA, Rose CP, Schwab, AJ, et al. A method of dynamic analysis of iodine-123-metaiodobenzylguanidine scintigrams in cardiac mechanical overload hypertrophy and failure. J Nucl Med 1993;34:589–600.

    PubMed  CAS  Google Scholar 

  61. Jaques S, Tobes MC, Sisson JC, Baker JA, Wieland DM. Comparison of the sodium dependency of uptake of meta-iodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol 1984;26:539–46.

    PubMed  CAS  Google Scholar 

  62. Merlet P, Valette H, Dubois-Rande J-L, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33:471–7.

    PubMed  CAS  Google Scholar 

  63. Merlet P, Dubois-Rande J-L, Adnot S, et al. Myocardial β-adrenergic desensitization and neuronal norepinephrine uptake function in idiopathic dilated cardiomyopathy. J Cardiovasc Pharmacol 1992;19:10–6.

    Article  PubMed  CAS  Google Scholar 

  64. Schwaiger M, Beanlands R, vom Dahl J. Metabolic tissue characterization in the failing heart by positron emission tomography. Eur Heart J 1994;15(suppl):14–9.

    PubMed  Google Scholar 

  65. Hartmann F, Ziegler S, Watzlowik P, Hadamitzky M, Richardt G. Evidence of regional myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon 11 hydroxyephedrine and positron emission tomography [Abstract]. Eur Heart J (in press).

  66. Dae MW, Herre JM, O'Connell JW, Botvinick EH, Newman D, Munoz L. Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction. J Am Coll Cardiol 1991;17:1416–23.

    PubMed  CAS  Google Scholar 

  67. Minardo JD, Tuli MM, Mock BH, et al. Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction and phenol application. Circulation 1988;78:1008–19.

    PubMed  CAS  Google Scholar 

  68. Stanton MS, Mahmoud MM, Radtke NL, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine. J Am Coll Cardiol 1989;14:1519–29.

    Article  PubMed  CAS  Google Scholar 

  69. Mantysaari M, Kuikka J, Hartikainen J, et al. Myocardial sympathetic nervous dysfunction detected with iodine-123-MIBG is associated with low heart rate variability after myocardial infarction. J Nucl Med 1995;36:956–61.

    PubMed  CAS  Google Scholar 

  70. Spinnler MT, Lombart F, Moretti C, et al. Evidence of functional alterations in sympathetic activity after myocardial infarction. Eur Heart J 1993;14:1334–43.

    PubMed  CAS  Google Scholar 

  71. Schwaiger M, Guibourg H, Rosenspire K, et al. Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol. J Nucl Med 1990;31:1352–7.

    PubMed  CAS  Google Scholar 

  72. Allman KC, Wieland DM, Muzik O, DeGrado TR, Wolfe ER Jr, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368–75.

    Article  PubMed  CAS  Google Scholar 

  73. Calkins H, Allman K, Bolling S, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation 1993;88:172–9.

    PubMed  CAS  Google Scholar 

  74. Mitrani RD, Klein LS, Miles WM, et al. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease. J Am Coll Cardiol 1993;22:1344–53.

    PubMed  CAS  Google Scholar 

  75. Wichter T, Hindricks G, Lerch H, et al. Regional myocardial sympathetic dysinnervation in arrhythmogenic right ventricular cardiomyopathy: an analysis using 123I-meta-iodobenzylguanidine scintigraphy. Circulation 1994;89:667–83.

    PubMed  CAS  Google Scholar 

  76. Calkins H, Lehmann MH, Allman K, Wieland D, Schwaiger M. Scintigraphic pattern of regional cardiac sympathetic innervation in patients with familial long QT syndrome using positron emission tomography. Circulation 1993;87:1616–21.

    PubMed  CAS  Google Scholar 

  77. Göhl K, Feistel H, Weikl A, Bachmann K, Wolf F. Congenital myocardial sympathetic dysinnervation (CMSD): a structural defect of idiopathic long QT syndrome. PACE Pacing Clin Electrophysiol 1991;14:1544–53.

    Article  PubMed  Google Scholar 

  78. Allman KC, Stevens MJ, Wieland DM, et al. Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 1993;22:1425–32.

    PubMed  CAS  Google Scholar 

  79. Langer A, Freeman MR, Josse RG, Armstrong PW. Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol 1995;25:610–8.

    Article  PubMed  CAS  Google Scholar 

  80. Glowniak JV, Turner FE, Gray LL, Palac RT, Lagunas-Solar MC, Woodward WR. Iodine-123 metaiodobenzylguanidine imaging of the heart of idiopathic congestive cardiomyopathy and cardiac transplants. J Nucl Med 1989;30:1182–91.

    PubMed  CAS  Google Scholar 

  81. De Marco T, Dae M, Yuen Green MS, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol 1995;25:927–31.

    Article  PubMed  Google Scholar 

  82. Schwaiger M, Hutchins GD, Kalff V, et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 1991;87:1681–90.

    Article  PubMed  CAS  Google Scholar 

  83. Schwaiger M, Wieland D, Muzik O, et al. Comparison of C-11 epinephrine and C-11 HED for evaluation of sympathetic neurons of the heart [Abstract]. J Nucl Med 1993;34:13P.

    Google Scholar 

  84. Kaye DM, Esler M, Kingwell B, McPherson G, Esmore D, Jennings G. Functional and neurochemical evidence for partial cardiac sympathetic reinnervation after cardiac transplantation in humans. Circulation 1993;88:1110–8.

    PubMed  CAS  Google Scholar 

  85. Merlet P, Delforge J, Syrota A, et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idopathic dilated cardiomyopathy. Circulation 1993; 87:1169–78.

    PubMed  CAS  Google Scholar 

  86. Valette H, Deleuze P, Syrota A, et al. Canine myocardial beta-adrenergic, muscarinic receptor densities after denervation: a PET study. J Nucl Med 1995;36:140–6.

    PubMed  CAS  Google Scholar 

  87. Story DD, Briley MS, Langer SZ. The effects of chemical sympathectomy with 6-hydroxydopamine on alpha-adrenoceptor and muscarinic cholinoceptor binding in rat heart ventricle. Eur J Pharmacol 1979;57:423–6.

    Article  PubMed  CAS  Google Scholar 

  88. Merlet P, Benvenuti C, Valette H, et al. Myocardial β-adrenergic receptors in heart transplanted patients: assessment with 11C-CGP 12177 and positron emission tomography [abstract]. Circulation 1992;86(suppl):I-245.

    Google Scholar 

  89. Deniss AR, March JD, Quigg RJ, Gordon JB, Colucci WS. β-Adrenergic receptor number and adenylate function in denervated transplanted and cardiomyopathic human hearts. Circulation 1989;79:1028–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münch, G., Ziegler, S., Nguyen, N. et al. Scintigraphic evaluation of cardiac autonomic innervation. J Nucl Cardiol 3, 265–277 (1996). https://doi.org/10.1016/S1071-3581(96)90040-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(96)90040-9

Key Words

Navigation