Skip to main content
Log in

Assessment of myocardial viability by dynamic tomographic iodine 123 iodophenylpentadecanoic acid imaging: Comparison with rest-redistribution thallium 201 imaging

  • Original Articles
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

This study examined the ability of dynamic 123I-labeled iodophenylpentade-canoic acid (IPPA) imaging to detect myocardial viability in patients with left ventricular (LV) dysfunction caused by coronary artery disease.

Methods and Results

Serial 180-degree single-photon emission computed tomographic (SPECT) images (five sets, 8 minutes each) were obtained starting 4 minutes after injection of 2 to 6 mCi 123I at rest in 21 patients with LV dysfunction (ejection fraction [EF] 34%±11%). The segmental uptake was compared with that of rest-redistribution 201Tl images (20 segments/study). The number of perfusion defects (reversible and fixed) was similar by IPPA and thallium (11±5 vs 10±5 segments/patient; difference not significant). There was agreement between IPPA and thallium for presence or absence (κ=0.78±0.03) and nature (reversible, mild fixed, or severe fixed) of perfusion defects (κ=0.54±0.04). However, there were more reversible IPPA defects than reversible thallium defects (7±4 vs 3±4 segments/patient; p=0.001). In 14 patients the EF (by gated pool imaging) improved after coronary revascularization from 33%±11% to 39%±12% (p=0.002). The number of reversible IPPA defects was greater in the seven patients who had improvement in EF than in the patients without such improvement (10±4 vs 5±4 segments/patient; p=0.075).

Conclusions

123I-labeled IPPA SPECT imaging is a promising new technique for assessment of viability. Reversible defects predict recovery of LV dysfunction after coronary revascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the hibernating myocardium. J Am Coll Cardiol 1986;8:1467–70.

    PubMed  CAS  Google Scholar 

  2. Iskandrian AS, Heo J, Nguyen T. Current and emerging scintigraphic methods to assess myocardial viability and their clinical importance. Am J Card Imaging 1992;6:16–27.

    PubMed  CAS  Google Scholar 

  3. Iskandrian AS, Heo J, Helfant RH, Segal BL. Chronic myocardial ischemia and left ventricular function. Ann Intern Med 1987;107:925–7.

    PubMed  CAS  Google Scholar 

  4. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985;72(suppl):123–35.

    Google Scholar 

  5. Schelbert HR, Buxton D. Insights into coronary artery disease gained from metabolic imaging. Circulation 1988;78:496–505.

    PubMed  CAS  Google Scholar 

  6. Iskandrian AS, Verani MS. Myocardial viability and nuclear cardiac imaging: principles and applications. 2nd ed. Philadelphia: FA Davis (in press).

  7. Rahimtoola SH. Coronary bypass surgery for chronic angina: a perspective. Circulation 1982;65:225–41.

    PubMed  CAS  Google Scholar 

  8. Dilsizian V, Bonow R. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 1993;87:1–20.

    PubMed  CAS  Google Scholar 

  9. Van der Wall EE, Den Hollander W, Heidendal GAK, Westera G, Majid PA, Roos JP. Dynamic myocardial scintigraphy with 123I-labeled free fatty acids in patients with myocardial infarction. Eur J Nucl Med 1981;6:383–9.

    PubMed  Google Scholar 

  10. Van der Wall EE, Heidendal GAK, Den Hollander W, Westera G, Roos JP. Metabolic myocardial imaging with 123I-labeled heptadecanoic acid in patients with angina pectoris. Eur J Nucl Med 1981;6:391–6.

    PubMed  Google Scholar 

  11. Hansen CL, Corbett JR, Pippin JJ, et al. Iodine-123 phenylpentadecanoic acid and single photon emission computed tomography in identifying left ventricular regional metabolic abnormalities in patients with coronary heart disease: comparison with thallium-201 myocardial tomography. J Am Coll Cardiol 1988;12:78–87.

    PubMed  CAS  Google Scholar 

  12. Murray G, Schad N, Ladd W, et al. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-iodophenylpentadecanoic acid and multicrystal gamma camera, and correlation with biopsy. J Nucl Med 1992;33:1269–77.

    PubMed  CAS  Google Scholar 

  13. Schön HR, Schelbert HR, Robinson G, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography, I: kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 1981;103:532–47.

    Article  Google Scholar 

  14. Schelbert HR, Henze E, Schon HR, et al. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography, III: in vivo demonstration of the effects of substrate availability on myocardial metabolism. Am Heart J 1983;105:492–504.

    Article  PubMed  CAS  Google Scholar 

  15. Schelbert HR, Henze E, Sochor H, et al. Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 1986;111:1055–64.

    Article  PubMed  CAS  Google Scholar 

  16. Weiss ES, Ahmed SA, Welch MJ, Williamson JR, Ter-Pogossian MM, Sobel BE. Quantification of infarction in cross sections of canine myocardium in vivo with positron emission transaxial tomography and 11C-palmitate. Circulation 1977;55:66–73.

    PubMed  CAS  Google Scholar 

  17. Gropler RJ, Geltman EM, Sampathkumaran K, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;15:1587–97.

    Google Scholar 

  18. Weinheimer CJ, Brown MA, Nohara R, Perez JE, Bergmann SR. Functional recovery after reperfusion is predicated on recovery of myocardial oxidative metabolism. Am Heart J 1993;125:939–49.

    Article  PubMed  CAS  Google Scholar 

  19. Gropler RJ, Siegel BA, Sampathkumaran K, et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 1992;19:989–97.

    PubMed  CAS  Google Scholar 

  20. Brown MA, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11 labeled acetate. Circulation 1987;76:687–96.

    PubMed  CAS  Google Scholar 

  21. Bergmann SR. Delineation of viable myocardium with metabolic imaging. In: Iskandrian AS, Van der Wall EE, eds. Myocardial viability. The Netherlands: Kluwers, 1994.

    Google Scholar 

  22. Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise thallium tomographic imaging in coronary artery disease. J Am Coll Cardiol 1993;22:66–70.

    Google Scholar 

  23. Iskandrian AS, Heo J, Kong B, Lyons E. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 1989;14:1477–86.

    Article  PubMed  CAS  Google Scholar 

  24. Chae SC, Heo J, Iskandrian AS, Wasserleben V, Cave V. Identification of extensive coronary artery disease in women by exercise single-photon emission computed tomographic (SPECT) thallium imaging. J Am Coll Cardiol 1993;21:1305–11.

    PubMed  CAS  Google Scholar 

  25. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution thallium-201 imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–41.

    PubMed  CAS  Google Scholar 

  26. Dilsizian V, Arrighi JA, Diodati JG et al. Myocardial viability in patients with chronic coronary artery disease: comparison of 99mTc-sestamibi with thallium reinjection and [18F] fluorode-oxyglucose. Circulation 1994;89:578–87.

    PubMed  CAS  Google Scholar 

  27. Fleiss JL. Statistical methods for rates and proportions. 2nd ed. New York: Wesley and Sons, 1981:217–25.

    Google Scholar 

  28. Iskandrian AS, Van der Wall EE: Myocardial viability: summary and perspectives. In: Iskandrian AS, Van der Wall EE, eds. The Netherlands: Kluwer, 1994.

    Google Scholar 

  29. Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–6.

    PubMed  CAS  Google Scholar 

  30. Iskandrian AS, Hakki AH, Kane SA, Goel IP, Mundth ED, Segal BL. Rest and redistribution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary arterial bypass grafting. Am J Cardiol 1983;51:1312–6.

    Article  PubMed  CAS  Google Scholar 

  31. Sabia P, Powers ER, Ragosta M, Sarenbock IJ, Burwell LR, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 1992;327:1825–31.

    PubMed  CAS  Google Scholar 

  32. Tillisch J, Brunker R, Marshall R, et al. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  33. Fragasso G, Mignonato A, Chierchia SL. Assessment of viability after myocardial infarction: clinical relevance and methodological problems. Int J Card Imaging 1993;9(suppl): 3–10.

    Article  PubMed  Google Scholar 

  34. Rozanski A, Berman DS, Gray R, et al. Use of thallium-201 redistribution scintigraphy in the preoperative differentiation of reversible and nonreversible myocardial asynergy. Circulation 1981;64:936–44.

    PubMed  CAS  Google Scholar 

  35. Gibson RS, Watson DD, Taylor GJ, et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983;1:804–15.

    Article  PubMed  CAS  Google Scholar 

  36. Tamaki N, Yonekura Y, Yamashita K, et al. SPECT thallium-201 tomography and positron tomography using N-13 ammonia and F-18 fluorodeoxyglucose in coronary artery disease. Am J Card Imaging 1989;3:3–9.

    Google Scholar 

  37. De Silva R, Yamamoto Y, Rhodes CG, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation 1992;86:1738–42.

    PubMed  Google Scholar 

  38. Gropler RJ, Siegel BA, Lee KJ et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 1990;31:1749–56.

    PubMed  CAS  Google Scholar 

  39. Marwick TH, MacIntyre WJ, Lafont A., Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. Circulation 1992;85:1347–53.

    PubMed  CAS  Google Scholar 

  40. Pierard LA, DeLandsheere CM, Berthe C, Rigo P, Kulbertus HE. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 1990;15:1021–31.

    Article  PubMed  CAS  Google Scholar 

  41. Eitzman D, Al-Aouar Z, Kanter HL, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–65.

    PubMed  CAS  Google Scholar 

  42. Gewirtz H, Fischman AJ, Abraham S, Gilson M, Strauss HW, Alpert NM. Positron emission tomographic measurements of absolute myocardial blood flow permits identification of nonviable myocardium in humans with chronic myocardial infarction. J Am Coll Cardiol 1994;23:851–9.

    Article  PubMed  CAS  Google Scholar 

  43. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 1989;32:217–38.

    Article  PubMed  CAS  Google Scholar 

  44. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 1981;23:321–36.

    Article  PubMed  CAS  Google Scholar 

  45. Flores EA, Pandian N, Schwartz S, et al. Effect of nitroglycerin on sestamibi uptake in CAD and LV dysfunction and assessment of myocardial viability. J Am Coll Cardiol 1994;23:343A.

    Google Scholar 

  46. Hansen CL, Heo J, Iskandrian AS. Prediction of improvement of left ventricular function after coronary revascularization from alterations in myocardial metabolic activity detected with I-123 phenylpentadecanoic acid dynamic SPECT imaging. J Am Coll Cardiol 1994;23:344A.

    Google Scholar 

  47. Iskandrian AS, Heo J, Stanberry C. When is myocardial viability an important clinical issue. J Nucl Med 1994;35:4S-7S.

    PubMed  CAS  Google Scholar 

  48. Iskandrian AS, Kegel JG, Tecce MA, Wasserleben V, Cave V, Heo J. Simultaneous assessment of left ventricular perfusion and function with technetium-99m sestamibi after coronary artery bypass grafting. Am Heart J 1993;126:199–203.

    Article  Google Scholar 

  49. Kiat H, Maddahi J, Roy L, et al. Comparison of technetium-99m-methoxy-isobutyl-isonitrile and thallium-201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989;117:1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by research grants from Medco Research, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iskandrian, A.S., Powers, J., Cave, V. et al. Assessment of myocardial viability by dynamic tomographic iodine 123 iodophenylpentadecanoic acid imaging: Comparison with rest-redistribution thallium 201 imaging. J Nucl Cardiol 2, 101–109 (1995). https://doi.org/10.1016/S1071-3581(95)80020-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(95)80020-4

Key Words

Navigation