Skip to main content
Log in

Radionuclide assessment of myocardial fatty acid metabolism by PET and SPECT

  • Reviews
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Although fatty acid is a major energy source in the normal myocardium, fatty acid oxidation is easily suppressed in a variety of cardiac disorders. Therefore assessment of fatty acid metabolism may hold an important role for early detection of myocardial abnormalities and provide insights into cardiac pathologic states. C-11 palmitate is a well-established PET tracer to probe myocardial fatty acid metabolism. On the other hand, a variety of iodinated fatty acid compounds have been introduced for assessment of fatty acid metabolism with conventional gamma cameras. These include straight-chain, such as iodopheyl pentadecanoic acid (IPPA), and branch-chain fatty acid compounds, such as beta-methyl iodopheyl pentadecanoic acid (BMIPP). This review article includes the characterization of these tracers and clinical experiences with these tracers for detection and characterizing patients with ischemic heart disease and cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neely JR, Rovetto M, Oram J. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 1972;15:289–329.

    Article  PubMed  CAS  Google Scholar 

  2. Liedke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 1981;23: 321–36.

    Article  Google Scholar 

  3. Marshall RC, Tillisch J, Phelps ME, Shelbert HR. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;67:766–88.

    PubMed  CAS  Google Scholar 

  4. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  5. Tamaki N, Yonekura Y, Yamashita K, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989;64:860–5.

    Article  PubMed  CAS  Google Scholar 

  6. Weiss ES, Hoffman EJ, Phelps ME, et al. External detection and visualization of myocardial ischemia with C-11 substrates in vivo and in vitro. Circ Res 1976;39:24–32.

    PubMed  CAS  Google Scholar 

  7. Sobel BE, Weiss ES, Welch MJ, Siegel BA, Ter-Pogosian MM. Detection of remote myocardial infarction in patients with positron transaxial tomography and intravenous C-11 palmitate. Circulation 1977;55:853–7.

    PubMed  CAS  Google Scholar 

  8. Lerch RA, Ambos HD, Bergmann SR, Welch MJ, Ter-Pogossian MM, Sobel BE. Localization of viable, ischemic myocardium by positron emission tomography with C-11 palmitate. Circulation 1981;64:689–99.

    PubMed  CAS  Google Scholar 

  9. Geltman EM, Biello D, Welch MJ, TerPogossian MM, Sobel BE. Characterization of nontransmural myocardial infarction by positron emission tomography. Circulation 1982;65:747–55.

    PubMed  CAS  Google Scholar 

  10. Schon HR, Schelbert HR, Robinson G, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography: I — Kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 1982;103:532–47.

    Article  PubMed  CAS  Google Scholar 

  11. Schon HR, Schelbert HR, Nahaji A, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography: II — Kinetics of C-11 palmitic acid in acutely ischemic myocardium. Am Heart J 1982;103:548–61.

    Article  PubMed  CAS  Google Scholar 

  12. Schelbert HR, Henze E, Keen R, et al. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography: IV — In vivo evaluation of acute demand-induced ischemia in dogs. Am Heart J 1983;106:736–50.

    Article  PubMed  CAS  Google Scholar 

  13. Poe ND, Robinson GD Jr, Graham LS, et al. Experimental basis for myocardial imaging with I-123-labeled hexadecanoic acid. J Nucl Med 1976;17:1077–82.

    PubMed  CAS  Google Scholar 

  14. Dudxzak R, Kletter K, Frischau H, et al. The use of 123I labeled heptadecanoic acid (HDA) as metabolic tracer. Eur J Nucl Med 1984;9:81–5.

    Google Scholar 

  15. Machulla HJ, Stocklin K, Kupfernagel C, et al. Comparative evaluation of fatty acids labeled with C-11, C1-34m, Br-77 and I-123 for metabolic studies of the myocardium. J Nucl Med 1978;19:298–302.

    PubMed  CAS  Google Scholar 

  16. van der Wall EE, Heidendal GAK, Den Hollander W, et al. Metabolic myocardial imaging with I-123 labeled heptadecanoic acid in patients with angina pectoris. Eur J Nucl Med 1981;6:391–6.

    PubMed  Google Scholar 

  17. Visser FC, van Eenige J, Westera G, et al. Metabolic fate pf radioiodinated heptadecanoic acid in the normal canine heart. Circulation 1985;72:565–71.

    PubMed  CAS  Google Scholar 

  18. Cuchet P, Demaison L, Bontemps L, et al. Do iodinated fatty acids under a nonspecific deiodination in the myocardium? Eur J Nucl Med 1985;10:505–10.

    Article  PubMed  CAS  Google Scholar 

  19. Machulla HJ, Marsmann M, Dutschka K. Biochemical synthesis of a radioiodinated phenyl fatty acid for in vivo metabolic studies of the myocardium. Eur J Nucl Med 1980;5:171–3.

    Article  PubMed  CAS  Google Scholar 

  20. Reske SN, Machulla HJ, Winkler C. Metabolism of 15-p-(I-123-phenyl)-pentadecanoic acid in hearts of rats. J Nucl Med 1982;23:10–8.

    Google Scholar 

  21. Reske SN, Sauer W, Machulla HJ, et al. 15-(p-(123I)-iodophenyl)-pentadecanoic acid as a tracer of lipic metabolism: comparison with (1-14C) palmitic acid in murine tissues. J Nucl Med 1984;25:1335–42.

    PubMed  CAS  Google Scholar 

  22. Reske SN, Sauer W, Machulla HJ, et al. Metabolism of 15-(p-(123I)-iodophenyl)-pentadecanoic acid in heart muscle and noncardiac tissue. Eur J Nucl Med 1985;10:228–34.

    Article  PubMed  CAS  Google Scholar 

  23. Reske SN, Biersack HJ, Lackner K, et al. Assessment of regional myocardial uptake and metabolism of w-(p123I-iodophenyl)-pentadecanoic acid with serial single-photon emission tomography. J Nucl Med 1982;23:249–53.

    Google Scholar 

  24. Knapp FF, Jr, Ambtrose KR, Callahan AP, et al. Effects of chain length and tellurium position on the myocardial uptake of Te-13m fatty acids. J Nucl Med 1981;22:988–93.

    PubMed  CAS  Google Scholar 

  25. Goodman MM, Knapp FF Jr, Callahan AP, et al. A new well-retained myocardial imaging agent: radioiodinated 15-(p-iodophenyl)-6-tellurapentadecanoic acid. J Nucl Med 1982;23:904–8.

    PubMed  CAS  Google Scholar 

  26. Otto CA, Brown LE, Scott AM. Radioiodinated branch-chain fatty acids: substrates for beta oxidation? J Nucl Med 1984;25:75–80.

    PubMed  CAS  Google Scholar 

  27. Schelbert H, Henze E, Keen R, et al. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 1986;111:1055–64.

    Article  PubMed  CAS  Google Scholar 

  28. Grover-McKay M, Schelbert HR, Schwaiger M, et al. Identification of impaired metabolic reserve by atrial pacing with significant coronary artery stenosis. Circulation 1986;74:281–92.

    PubMed  CAS  Google Scholar 

  29. Tamaki N, Kawamoto M, Takahashi N, et al. Assessment of myocardial fatty acid metabolism with positron emission tomography at rest and during dobutamine infusion in patients with coronary artery disease. Am Heart J 1993;125:702–10.

    Article  PubMed  CAS  Google Scholar 

  30. Fox KAA, Abensschein DR, Ambos HD, Sobel BE, Bergmann SR. Efflux of metabolized and non-metabolized fatty acid from canine myocardium: implications for quantifying myocardial metabolism tomography. Circ Res 1985;57:232–43.

    PubMed  CAS  Google Scholar 

  31. Wyns W, Schwaiger M, Huang SC, et al. Effect of inhibition of fatty acid oxidation on myocardial kinetics of C-11 labeled palmitate. Circ Res 1989;65:1787–97.

    PubMed  CAS  Google Scholar 

  32. Brown M, Marshall DR, Sobel BE, et al. Delineation of myocardial utilization with carbon-11-labeled acetate. Circulation 1987;76:687–96.

    PubMed  CAS  Google Scholar 

  33. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989;30:187–93.

    PubMed  CAS  Google Scholar 

  34. Tamaki N, Magata Y, Takahashi N, et al. Myocardial oxidative metabolism in normal subjects in fasting, glucose loading and dobutamine infusion states. Ann Nucl Med 1992;6:221–8.

    PubMed  CAS  Google Scholar 

  35. Kennedy PL, Corbett JR, Kulkarni PV, et al. Iodine-123-phenylpentadecanoic acid myocardial scintigraphy: usefulness in the identification of myocardial ischemia. Circulation 1986;74:1007–15.

    PubMed  CAS  Google Scholar 

  36. Hansen CL, Corbett JR, Pippin JJ, et al. Iodine-123-phenylpentadecanoic acid and single-photon emission computed tomography in identifying left ventricular metabolic abnormalities in patients with coronary artery disease: comparison with thallium-201 myocardial tomography. J Am Coll Cardiol 1988;12:78–87.

    PubMed  CAS  Google Scholar 

  37. Kahn JK, Pippin JJ, Akers MS, Corbett JR: Estimation of jeopardized left ventricular myocardium in symptomatic and silent ischemia as determined by iodine-123 phenylpentadecanoic acid rotational tomography. Am J Cardiol 1989;63:540–544.

    Article  PubMed  CAS  Google Scholar 

  38. Schad N, Wagner RK, Hallermeier J, Daus HJ, Vattimo A, Bertelli P: Regional rates of myocardial fatty acid metabolism: comparison with coronary angiography and ventriculography. Eur J Nucl Med 1990;16:205–212.

    Article  PubMed  CAS  Google Scholar 

  39. Kropp J, Linkung J, irchhoff PG, Knapp FF, Reichmann K, Reske SN, Biersack HJ: Single photon emission tomography imaging of myocardial oxidative metabolism with 159(p-I-123-iodophenyl) pentadecanoic acid in patients with coronary artery disease and aorto-coronary bypass graft surgery. Eur J Nucl Med 1991;18:467–474.

    Article  PubMed  CAS  Google Scholar 

  40. Zimmermann R, Rauch B, Kapp M, Bubeck B, Neumann FJ, Seitz F, Stokstad P, Mall G, Tillmanns H, Kubler W: Myocardial scintigraphy with Iodine-123-phenylpentadecanoic acid and thallium-201 in patients with coronary artery disease: a comparative dual-isotope study. Eur J Nucl Med 1992;19:946–954.

    Article  PubMed  CAS  Google Scholar 

  41. Kuikka JT, Mussalo, Hietakorpi S, Vanninen E, Lansimies E: Evaluation of myocardial viability with technetium-99m hexakis-2-methoxyisobutyl isonitrile and Iodine-123-phenylpentadecanoic acid and single photon emission tomography. Eur J Nucl Med 1992;19:882–889.

    Article  PubMed  CAS  Google Scholar 

  42. Kropp J, Koehler U, Likungu J, et al. Semiquantitative 15-(p-(I-123) iodophenyl) pentadecanoic acid (IPPA)-SPECT in the detection of coronary artery disease. Ann Nucl Med 1993;7:SII-59–SII-67.

    Google Scholar 

  43. Corbett J. Clinical experience with iodine-123-iodophenylpentadecanoic acid. J Nucl Med 1994;35:32S-37S.

    PubMed  CAS  Google Scholar 

  44. Hansen CL. Preliminary report of an ongoing phase I/II dose range, safety and efficacy study of iodine-123-phenylpentadecanoic acid for the identification of viable myocardium. J Nucl Med 1994;35:38S-42S.

    PubMed  CAS  Google Scholar 

  45. Iskandrian AS, Powers J, Cave V, Wasserleben V, Cassell D, Heo J. Assessment of myocardial viability by dynamic tomographic I-123 iodophenylpentadecanoic acid imaging: comparison to rest-redistribution thallium-201 imaging. J Nucl Cardiol 1995;2:101–9.

    PubMed  CAS  Google Scholar 

  46. Murray GL, Schad NC, Magill L, Zwaag RV. Myocardial viability assessment with dynamic low-dose iodine-123-iodophenylpentadecanoic acid metabolic imaging: comparison with myocardial biopsy and reinjection SPECT thallium after myocardial infarction. J Nucl Med 1994;35:43S-48S.

    PubMed  CAS  Google Scholar 

  47. Murray G, Schad N, Ladd W, et al. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-phenylpentadecanoic acid and multicrystal gamma camera and correlation with biopsy. J Nucl Med 1992;33:1269–77.

    PubMed  CAS  Google Scholar 

  48. Livni E, Elmaleh DR, Levy S, et al. Beta-methyl (1-C-11)-heptadecanoic acid: a new myocardial metabolic tracer for positron emission tomography. J Nucl Med 1982;23:169–76.

    PubMed  CAS  Google Scholar 

  49. Yonekura Y, Brill AB, Som P, et al. Regional myocardial substrate uptake in hypertensive rats: a quantitative autoradiographic measurement. Science 1985;227:1419–96.

    Article  Google Scholar 

  50. Yamamoto K, Som P, Brill AB, et al. Dual tracer autoradiographic study of β-methyl-(1-14C) heptadecanoic acid and 15-p-(131I)-iodophenyl-β-methyl-pentadecanoic acid in normotensive and hypertensive rats. J Nucl Med 1986;27:1178–83.

    PubMed  CAS  Google Scholar 

  51. Knapp FF Jr, Goodman MM, Callahan AP, et al. Radioiodinated 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid: a useful new agent to evaluate myocardial fatty acid uptake. J Nucl Med 1986;27:521–31.

    PubMed  CAS  Google Scholar 

  52. Ambrose KR, Owen BA, Goodman MM, Knapp FF Jr. Evaluation of the metabolism in rat heart of two new radioiodinated 3-methyl-branched fatty acid myocardial imaging agents. Eur J Nucl Med 1987;12:486–91.

    Article  PubMed  CAS  Google Scholar 

  53. Fujibayashi Y, Yonekura Y, Takemura Y, et al. Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S) methylpentadecanoic acid (BMIPP), in relation to ATP concentration. J Nucl Med 1990;31:1818–22.

    PubMed  CAS  Google Scholar 

  54. Fujibayashi Y, Som P, Yonekura Y, et al. Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, 125I-(p-iodophenyl)-3-(R,S) methylpentadecanoic acid (BMIPP), and correlation to ATP concentration, II: studies in salt-induced hypertensive rats. Nucl Med Biol 1993;20:163–6.

    Article  PubMed  CAS  Google Scholar 

  55. Miller DD, Gill JB, Elmaleh D, Aretz T, Boucher CA, Strauss HW. Fatty acid analogue accumulation: a marker of myocyte viability in ischemic-reperfused myocardium. Circ Res 1988; 63:681–92.

    PubMed  CAS  Google Scholar 

  56. Nishimura T, Sago M, Kihara K, et al. Fatty acid myocardial imaging using 123I-β-methyl-iodophenyl pentadecanoic acid (BMIPP): comparison of mocardial perfusion and fatty acid utilization in canine myocardial infarction (occlusion and reperfusion model). Eur J Nucl Med 1989;15:341–5.

    Article  PubMed  CAS  Google Scholar 

  57. Chouraqui P, Maddahi J, Henkin R, Karesh SM, Galie E, Berman DS. Comparison of myocardial imaging with iodine-123-iodophenyl-9-methyl pentadecanoic acid and thallium-201-chloride for assessing of patients with exercise-induced myocardial ischemia. J Nucl Med 1991;32:447–52.

    PubMed  CAS  Google Scholar 

  58. Saito T, Yasuda T, Gold HK, et al. Differentiation of regional reperfusion and fatty acid uptake in zones of myocardial injury. Nucl Med Commun 1991;12:663–75.

    Article  PubMed  CAS  Google Scholar 

  59. Geeter FD, Franken PR, Bossuyt A. Relationship between blood flow and fatty acid metabolism in subacute myocardial infarction: a study means of 99mTc-sestamibi and 123I-β-methyl-iodophenyl pentadecanoic acid. Eur J Nucl Med 1994;21:283–91.

    Article  PubMed  Google Scholar 

  60. Tamaki N, Kawamoto M, Yonekura Y, et al. Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: assessment with emission tomography using an iodonated branched fatty acid. J Nucl Med 1992;33:659–67.

    PubMed  CAS  Google Scholar 

  61. Kawamoto M, Tamaki N, Yonekura Y, et al. Combined study with I-123 fatty acid and thallium-201 to assess ischemic myocardium. Ann Nucl Med 1994;8:47–54.

    Article  PubMed  CAS  Google Scholar 

  62. Tamaki N, Kawamoto M. The use of iodinated free fatty acids for assessing fatty acid metabolism. J Nucl Cardiol 1994;1:S72–78.

    Article  Google Scholar 

  63. Matsunari I, Saga T, Taki J, et al. Kinetics of iodine-123-BMIPP in patients with prior myocardial infarction: assessment with dynamic rest and stress images compared with stress thallium-201 SPECT. J Nucl Med 1994;35:1279–85.

    PubMed  CAS  Google Scholar 

  64. Kawamoto M, Tamaki N, Yonekura Y, et al. Significance of myocardial uptake of iodine 123-labeled beta-methyl iodophenyl pentadecanoic acid: comparison with kinetics of carbon 11-labeled palmitate. J Nucl Cardiol 1994;1:522–8.

    Article  PubMed  CAS  Google Scholar 

  65. Grover-McKay M, Schwaiger M, Krivokapich J, et al. Regional myocardial blood flow and metabolism in mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Cardiol 1989;13:317–24.

    Article  CAS  Google Scholar 

  66. Kurata C, Kobayashi A, Yamazaki N. Dual-tracer autoradiographic study with thallium-201 and radioiodinated fatty acid in cardiomyopathic hamsters. J Nucl Med 1989;30:80–7.

    PubMed  CAS  Google Scholar 

  67. Kurata C, Taniguchi T, Aoshima S, et al. Myocardial emission computed tomography with iodine-123-labeled beta-methylbranched fatty acid in patients with hypertrophic cardiomyopathy. J Nucl Med 1992;33:6–13.

    PubMed  CAS  Google Scholar 

  68. Nishimura T, Uehara T, Shimonagata T, Nagata S, Haze K. Clinical results with β-methyl-p-(123I) iodophenylpentadecanoic acid, single-photon emission computed tomography in cardiac disease. J Nucl Cardiol 1994;1:S65-S71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaki, N., Fujibayashi, Y., Magata, Y. et al. Radionuclide assessment of myocardial fatty acid metabolism by PET and SPECT. J Nucl Cardiol 2, 256–266 (1995). https://doi.org/10.1016/S1071-3581(05)80063-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(05)80063-7

Key Words

Navigation