Skip to main content
Log in

Attenuation correction in cardiac positron emission tomography and single-photon emission computed tomography

  • Reviews
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Quantitation in cardiac positron emission tomography (PET) and single-photon emission computed tomography (SPECT) depends on being able to correct for several physical factors that tend to distort the data. One of the most important of these corrections is the correction for attenuation. For PET, cardiac attenuation correction is a reality, although certain problems remain to be solved. For SPECT, recent developments in gamma camera hardware and reconstruction methods have finally made it possible to attempt attenuation correction in a clinical setting. This article reviews the methods available to perform attenuation correction in both PET and SPECT, with emphasis on the commonality between the problems encountered and solutions proposed for each modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia EV. Quantitative myocardial perfusion single-photon emission computed tomographic imaging: quo vadis? (where do we go from here?). J Nucl Cardiol 1994;1:83–93.

    Article  PubMed  CAS  Google Scholar 

  2. Bacharach SL. Attenuation correction in cardiac PET: practical considerations. In: Schwaiger M, ed. Cardiac positron emission tomography. Norwood, Massachusetts: Kluwer Academic, 1995.

    Google Scholar 

  3. Muellhehner G, Karp J, Mankoff DA, Beerbohm D, Ordonez CE. Design and performance of a new positron tomograph. IEEE Trans Nucl Sci 1988; 35: 670–4.

    Article  Google Scholar 

  4. de Kemp RA, Nahmias C. Attenuation correction in PET using single photon transmission measurement. Med Phys 1992; 21: 771–8.

    Article  Google Scholar 

  5. Carroll LR, Kretz P, Orcutt G. The orbiting rod source: improving performance in PET transmission correction scans. In: Emission computed tomography: current trends. New York: Society of Nuclear Medicine, 1983; 235–47.

    Google Scholar 

  6. Thompson CJ, Ranger NT, Evans AC. Simultaneous transmission and emission scans in positron emission tomography. IEEE Trans Nucl Sci 1989; 36: 1011–6.

    Article  CAS  Google Scholar 

  7. Tsui BMW, Gullberg GT, Edgerton ER, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989; 30: 497–507.

    PubMed  CAS  Google Scholar 

  8. Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 1993; 34: 1752–60.

    PubMed  CAS  Google Scholar 

  9. Tung CH, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 1992; 39: 1134–43.

    Article  CAS  Google Scholar 

  10. Jaszczak RJ, Gilland DR, Hanson MW, Jang S, Greer KL, Coleman RE. Fast transmission CT for determining attenuation maps using a collimated line source, rotatable air-copperlead attenuators and fan-beam collimation. J Nucl Med 1993; 34: 1577–86.

    PubMed  CAS  Google Scholar 

  11. Ficaro EP, Fessler JA, Rogers WL, Schwaiger M. Comparison of americium-241 and technetium-99m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med 1994; 35: 652–63.

    PubMed  CAS  Google Scholar 

  12. Herman GT, Lewitt RM. Evaluation of a preprocessing algorithm for truncated CT projections. J Comput Assist Tomogr 1981; 5: 127–35.

    Article  PubMed  CAS  Google Scholar 

  13. Ogawa K, Nakajima M, Yuta S. A reconstruction algorithm from truncated projections. IEEE Trans Med Imaging 1984; 3: 34–40.

    Article  PubMed  CAS  Google Scholar 

  14. Gullberg GT, Zeng GL, Datz FL, Christian PE, Tung CH, Morgan HT. Review of convergent beam tomography in single photon emission computed tomography. Phys Med Biol 1992; 37: 507–34.

    Article  PubMed  CAS  Google Scholar 

  15. Manglos SH, Bassano DA, Duxbury CE, Capone RB. Attenuation maps for SPECT determined using cone beam transmission computed tomography. IEEE Trans Nucl Sci 1990; 37: 600–8.

    Article  Google Scholar 

  16. Manglos SH, Bassano DA, Thomas FD. Cone-beam transmission computed tomography for nonuniform attenuation compensation of SPECT images J Nucl Med 1991; 32: 1813–20.

    PubMed  CAS  Google Scholar 

  17. Manglos SH, Thomas FD, Gagne GM, Hellwig BJ. Phantom study of breast tissue attenuation in myocardial imaging. J Nucl Med 1993; 34: 992–6.

    PubMed  CAS  Google Scholar 

  18. Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 1989; 10: 83–97.

    Article  PubMed  CAS  Google Scholar 

  19. Maze A, Le Cloirec J, Collorec R, Bizais Y, Briandet P, Bourguet P. Iterative reconstruction methods for nonuniform attenuation distribution in SPECT. J Nucl Med 1993; 34: 1204–9.

    PubMed  CAS  Google Scholar 

  20. Walters TE, Simon W, Chesler DA, Correia JA. Attenuation correction in gamma emission computed tomography. J Comput Assist Tomogr 1981; 5: 89–94.

    Article  PubMed  CAS  Google Scholar 

  21. Madsen MT, Kirchner PT, Edlin JP, Nathan MA, Kahn D. An emission-based technique for obtaining attenuation correction data for myocardial SPECT studies. Nucl Med Commun 1993; 14: 689–95.

    Article  PubMed  CAS  Google Scholar 

  22. Carson RE, Daube-Witherspoon ME, Green MV. A method for postinjection PET measurements with a rotating source. J Nucl Med 1988; 29: 1558–67.

    PubMed  CAS  Google Scholar 

  23. Daube-Witherspoon ME, Carson RE, Green MV. Postinjection transmission attenuation measurements for PET. IEEE Trans Nucl Sci 1988; 35: 757–61.

    Article  CAS  Google Scholar 

  24. Jaszczak RJ, Wang H, Kadrmas D, Li J, McCormick JW, Coleman RE. Experimental evaluation of a tellurium-123m transmission source to determine attenuation maps for SPECT. IEEE Trans Med Imaging (in press).

  25. Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987; 28: 844–51.

    PubMed  CAS  Google Scholar 

  26. Frey EC, Tsui BMW, Perry JR. Simultaneous acquisition of emission and transmission data for improved TI-201 cardiac SPECT imaging using a Tc-99m transmission source. J Nucl Med 1992; 12: 2238–45.

    Google Scholar 

  27. Morgan HT, Thornton BG, Shand DC, Ray JS, Maniawski PJ. A simultaneous transmission-emission imaging system: description and performance. Bedford Heights, Ohio: Picker International, 1994.

    Google Scholar 

  28. Bellini S, Piacentini M, Cafforio C, Rocca F. Compensation of tissue absorption in emission tomography. IEEE Trans Acous Speech Sign Proc 1979; 27: 213–8.

    Article  Google Scholar 

  29. Tretiak O, Metz C. The exponential radon transform. Siam J Appl Math 1980; 39: 341–54.

    Article  Google Scholar 

  30. Inouye T, Kose K, Hasegawa A. Image reconstruction algorithm for single-photon-emission computed tomography with uniform attenuation. Phys Med Biol 1989; 34: 299–304.

    Article  PubMed  CAS  Google Scholar 

  31. Murase K, Itoh H, Mogami H, et al. A comparative study of attenuation correction algorithms in single-photon-emission computed tomography (SPECT). Eur J Nucl Med 1987; 13: 55–62.

    PubMed  CAS  Google Scholar 

  32. Tsui BMW, Zhao X, Frey EC, Gullberg GT. Comparison between ML-EM and WLS-CG algorithms for SPECT image reconstruction. IEEE Trans Nucl Sci 1991; 38: 1766–72.

    Google Scholar 

  33. Sorenson JA. Quantitative measurements of radioactivity in vivo by whole body counting. In: Hine GT, Sorenson JA, eds. Instrumentation in nuclear medicine. New York: Academic Press, 1974; 311–48.

    Google Scholar 

  34. Kay DB, Kewes JW. First order corrections for absorption and resolution compensation in radionuclide Fourier tomography. J Nucl Med 1975; 16: 540–1.

    Google Scholar 

  35. Budinger TF, Gullberg GT, Huesman RH. Emission computed tomography. In: Herman GT, ed. Image reconstructions from projections. Berlin: Springer Verlag, 1979: 147–256.

    Google Scholar 

  36. Bourguignon MH, Berrah H, Bendriem B, et al. Correction of attenuation in SPECT with an attenuation coefficient map: a new method. J Nucl Biol Med 1993; 37: 26–32.

    PubMed  CAS  Google Scholar 

  37. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; 25: 638–43.

    Article  Google Scholar 

  38. Manglos SH, Jaszczak RJ, Floyd CE, Hahn LJ, Greer KL, Coleman RE. A quantitative comparison of attenuation-weighted backprojection with multiplicative and iterative postprocessing attenuation compensation in SPECT. IEEE Trans Med Imaging 1988; 7: 127–34.

    Article  PubMed  CAS  Google Scholar 

  39. Budinger TF, Gullberg GT. Three-dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci 1974; 21: 2–20.

    Article  Google Scholar 

  40. Moore SC, Brunelle JA, Kirsch CM. An iterative attenuation correction for a single photon, scanning, multidetector tomographic system. J Nucl Med 1981; 22: 65.

    Google Scholar 

  41. Morozumi T, Nakajima M, Ogawa K, Yata S. Attenuation correction methods using the information of attenuation distribution in SPECT Med Imaging Technol 1984; 20: 22–8.

    Google Scholar 

  42. Pan X, Wong WH, Chen CT, Liu J. Correction for photon attenuation in SPECT: analytical framework, average attenuation factors, and a new hybrid approach. Phys Med Biol 1993; 38: 1219–34.

    Article  PubMed  CAS  Google Scholar 

  43. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984; 8: 306–16.

    PubMed  CAS  Google Scholar 

  44. Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol 1970; 29: 471–81.

    Article  PubMed  CAS  Google Scholar 

  45. Gullberg GT, Huesman RH, Malko JA, Pelc NJ, Budinger TF. An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 1985; 30: 799–816.

    Article  PubMed  CAS  Google Scholar 

  46. Tsui BMW, Hu HB, Gilland DR, Gullberg GT. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci 1988; 35: 778–83.

    Article  CAS  Google Scholar 

  47. Liang Z. Compensation for attenuation, scatter, and detector response in SPECT reconstruction via iterative FBP methods. Med Phys 1993; 20: 1097–106.

    Article  PubMed  CAS  Google Scholar 

  48. Gilland DR, Jaszczak RJ, Wang H, Turkington TG, Greer KL. Coleman RE. A 3D model of non-uniform attenuation and detector response for efficient iterative reconstruction in SPECT. Phys Med Biol 1994; 39: 547–61.

    Article  PubMed  CAS  Google Scholar 

  49. Tsui BMW, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH. The importance of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol 1994; 39: 509–30.

    Article  PubMed  CAS  Google Scholar 

  50. McCord ME, Bacharach SL, Bonow RO, Dilsizian V, Cuocolo A, Freedman N. Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med 1992; 33: 1209–14.

    PubMed  CAS  Google Scholar 

  51. Kemerink GJ, Bacharach SL, Carson RE. Effects of attenuation scan misalignment in cardiac SPECT [Abstract]. J Nucl Med 1990; 31: 875.

    Google Scholar 

  52. Bacharach SL, Douglas MA, Carson RE, et al. Threedimensional registration of cardiac positron emission tomography attenuation scans. J Nucl Med 1993; 34: 311–21.

    PubMed  CAS  Google Scholar 

  53. Stearns CW. Context-sensitive angular filtering of PET transmission data. IEEE Trans Med Imaging (in press).

  54. Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 1993; 34: 143–50.

    PubMed  CAS  Google Scholar 

  55. Huang SC, Carson R, Phelps M, Hoffman EJ, Schelbert HR, Kuhl DE. A boundary method for attenuation correction in positron emission tomography. J Nucl Med 1981; 22: 627–37.

    PubMed  CAS  Google Scholar 

  56. Xu EZ, Mullani NA, Gould KL, Anderson WL. A segmented attenuation correction for PET. J Nucl Med 1991; 32: 161–5.

    PubMed  CAS  Google Scholar 

  57. Price JC, Bacharach SL, Freedman N, Carson RE. Noise reduction in PET attenuation correction by maximum likelihood (ML) histogram sharpening of attenuation images [Abstract]. J Nucl Med 1993; 34: 28P.

  58. Beyer T, Kinahan PE, Townsend DW, Sashin D, Mintum MA. The use of x-ray CT for attenuation correction of PET data. IEEE Trans Med Imaging (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacharach, S.L., Buvat, I. Attenuation correction in cardiac positron emission tomography and single-photon emission computed tomography. J Nucl Cardiol 2, 246–255 (1995). https://doi.org/10.1016/S1071-3581(05)80062-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(05)80062-5

Key Words

Navigation