Skip to main content
Log in

Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps

  • Reviews
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Attenuation is believed to be one of the major causes of false-positive cardiac single-photon emission computed tomographic (SPECT) perfusion images. This article reviews the physics of attenuation, the artifacts produced by attenuation, and the need for scatter correction in combination with attenuation correction. The review continues with a comparison of the various configurations for transmission imaging that could be used to estimate patient specific attenuation maps, and an overview of how these are being developed for use on multiheaded SPECT systems, including discussions of truncation, noise, and spatial resolution of the estimated attenuation maps. Ways of estimating patient specific attenuation maps besides transmission imaging are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DuPuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989;30:441–9.

    Google Scholar 

  2. Bacharach SL, Buvat I. Attenuation correction in cardiac PET and SPECT. J Nucl Card 1995;2:246–55.

    Article  CAS  Google Scholar 

  3. Sorenson JA, Phelps ME. Physics in nuclear medicine. 2nd ed. Orlando, Florida: Grune and Stratton, Inc., 1987:178–96.

    Google Scholar 

  4. Attix FH. Introduction to radiological physics and radiation dosimetry. New York: John Wiley, 1986:38–60, 124–59.

    Book  Google Scholar 

  5. Radiological Health Handbook. Washington: US Dept HEW, 1970:137–9.

  6. Eisner RL, Tamas MJ, Cloninger K, et al. Normal SPECT thallium-201 bull’s-eye display: gender differences. J Nucl Med 1988;29:1901–9.

    PubMed  CAS  Google Scholar 

  7. Manglos SH, Thomas FD, Gagne GM, Hellwig BJ. Phantom study of breast tissue attenuation in myocardial imaging. J Nucl Med 1993;34:992–6.

    PubMed  CAS  Google Scholar 

  8. Watson D. Quantification of myocardial perfusion. Wintergreen, North Carolina: Nuclear Cardiology Retreat, July 11, 1994.

    Google Scholar 

  9. Manglos SH, Jaszczak RJ, Floyd CE, Hahn LJ, Greer KL, Coleman RE. Nonisotropic attenuation in SPECT: phantom tests of quantitative effects and compensation techniques. J Nucl Med 1987;28:1584–91.

    PubMed  CAS  Google Scholar 

  10. Manglos SH, Jaszczak RJ, Floyd CE, Hahn LJ, Greer KL, Coleman RE. A quantitative comparison of attenuation-weighted backprojection with multiplicative and iterative postprocessing attenuation compensation in SPECT. IEEE Trans Med Imag 1988;7:128–34.

    Google Scholar 

  11. Knesaurek K, King MA, Glick SJ, Penney BC. Investigation of the causes of geometrical distortion in 180° and 360° angular sampling SPECT. J Nucl Med 1989;30:1666–75.

    PubMed  CAS  Google Scholar 

  12. Germano G, Chua T, Kiat H, Areeda JS, Berman DS. A quantitative phantom analysis of artifacts due to hepatic activity in technetium-99m myocardial perfusion SPECT studies. J Nucl Med 1994;35:356–9.

    PubMed  CAS  Google Scholar 

  13. Nuyts J, Dupont P, Van den Maegdenbergh V, Vleugels S, Suetens P, Mortelmans L. A study of liver-heart artifact in emission tomography. J Nucl Med 1995;36:133–9.

    PubMed  CAS  Google Scholar 

  14. Ljungberg M, Strand S-E. A Monte Carlo program for the simulation of scintillation camera characteristics. Comp Meth Prog Biomed 1989;29:257–72.

    Article  CAS  Google Scholar 

  15. Tsui BMW, Zhao XD, Gregoriou GK, et al. Quantitative cardiac SPECT reconstruction with reduced image degradation due to patient anatomy. IEEE Trans Nucl Sci 1994;41:2838–48.

    Article  Google Scholar 

  16. deVries DJ, King MA. Window selection for dual photopeak window scatter correction in Tc-99m imaging. IEEE Trans Nucl Sci 1994;41:2771–8.

    Article  Google Scholar 

  17. Hademenous GJ, King MA, Ljungberg M, Zubal G, Harrell CR. A scatter correction method for T1-201 images: a Monte Carlo investigation. IEEE Trans Nucl Sci 1993;30:1179–86.

    Article  Google Scholar 

  18. Coleman M, King MA, Glick SJ, Knesaurek K, Penney BC. Investigation of the stationarity of the modulation transfer function and the scatter fraction in conjugate view SPECT restoration filtering. IEEE Trans Nucl Sci 1989;36:969–72.

    Article  CAS  Google Scholar 

  19. King MK, Xia W, deVries DJ, et al. A Monte Carlo investigation of artifacts caused by liver uptake in SPECT perfusion imaging with Tc-99m labeled agents. J Nucl Cardiol [in press].

  20. Harris CC, Greer KL, Jaszczak RJ, Floyd CE, Fearnow EC, Coleman RE. Tc-99m attenuation coefficients in water-filled phantoms determined with gamma cameras. Med Phys 1984;11:681–5.

    Article  PubMed  CAS  Google Scholar 

  21. Ljungberg M, King MA, Hademenous GJ, Strand SV. Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 1994;35:143–51.

    PubMed  CAS  Google Scholar 

  22. Floyd CE, Jaszczak RJ, Coleman RE. Inverse monte carlo: a unified reconstruction algorithm. IEEE Trans Nucl Sci 1985;32:779–85.

    Article  Google Scholar 

  23. Beekman F, Eijkman E, Viergever M, Born G, Slijpen E. Object shape dependent PSF model for SPECT imaging. IEEE Trans Nucl Sci 1993;40:31–9.

    Article  CAS  Google Scholar 

  24. Frey E, Tsui BMW. A practical method for incorporating scatter in a projector-backprojector for accurate scatter compensation in SPECT. IEEE Trans Nucl Sci 1993;40:1107–16.

    Article  CAS  Google Scholar 

  25. Jaszczak RJ, Chang LT, Stein NA, Moore FE. Whole-body single-photon emission computed tomography using dual, large-field-of-view scintillation cameras. Phys Med Biol 1979;24:1123–43.

    Article  PubMed  CAS  Google Scholar 

  26. Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Comm 1989;10:83–97.

    Article  CAS  Google Scholar 

  27. Hasegawa BH, Lang TF, Brown JK, et al. Object-specific attenuation correction of SPECT with correlated dual-energy X-ray CT. IEEE Trans Nucl Sci 1993;40:1242–52.

    Article  CAS  Google Scholar 

  28. Maeda H, Itoh H, Ishii Y, et al. Determination of the pleural edge by gamma-ray transmission computed tomography. J Nucl Med 1981;22:815–7.

    PubMed  CAS  Google Scholar 

  29. Malko JA, Van Heertum RL, Gullberg GT, Kowalsky WP. SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med 1985;26:701–5.

    Google Scholar 

  30. Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28:844–51.

    PubMed  CAS  Google Scholar 

  31. Greer KL, Harris CC, Jaszczak RJ, et al. Transmission computed tomography data acquisition with a SPECT system. J Nucl Med Tech 1987;15:53–6.

    Google Scholar 

  32. Tsui BMW, Gullberg GT, Edgerton ER, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30:497–507.

    PubMed  CAS  Google Scholar 

  33. Galt JR, Cullom SJ, Garcia EV. SPECT quantitation: a simplified method of attenuation and scatter correction for cardiac imaging. J Nucl Med 1992;33:2232–7.

    PubMed  CAS  Google Scholar 

  34. Cao ZJ, Tsui BMW. Performance characteristics of transmission imaging using a uniform sheet source with a parallel-hole collimator. Med Phys 1992;19:1205–12.

    Article  PubMed  CAS  Google Scholar 

  35. Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 1993;34:1752–60.

    PubMed  CAS  Google Scholar 

  36. Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Nonuniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 1992;39:1134–43.

    Article  CAS  Google Scholar 

  37. Jaszczak RJ, Gilland DR, Hanson MW, Jang S, Greer KL, Coleman RE. Fast transmission CT for determining attenuation maps using a collimated line source, rotatable air-copperlead attenuators and fan-beam collimation. J Nucl Med 1993;34:1577–86.

    PubMed  CAS  Google Scholar 

  38. Datz FL, Gullberg GT, Zeng GL, et al. Application of convergent-beam collimation and simultaneous transmission emission tomography to cardiac single-photon emission computed tomography. Sem Nucl Med 1994;24:17–37.

    Article  CAS  Google Scholar 

  39. Morgan HT, Thornton BG, Shand DC, Ray JS, Maniawski PJ. A simultaneous transmission-emission imaging system: description and performance. J Nucl Med 1994;35:P193.

    Google Scholar 

  40. Kemp BJ, Prato FS, Nicholson RL, Reese L. Transmission computed tomography imaging of the head with a SPECT system and a collimated line source. J Nucl Med 1995;36:328–35.

    PubMed  CAS  Google Scholar 

  41. Manglos SH, Bassano DA, Thomas FD, Grossman ZD. Imaging of the human torso using cone-beam transmission CT implemented on a rotating gamma camera. J Nucl Med 1992;33:150–6.

    PubMed  CAS  Google Scholar 

  42. Ljungberg M, Strand S-V, Rajeevan N, King MA. Monte carlo simulation of transmission studies using a planar source with a parallel collimator and a line source with a fan-beam collimator. IEEE Trans Nucl Sci 1994;41:1577–84.

    Article  Google Scholar 

  43. Frey EC, Tsui BMW, Perry JR. Simultaneous acquisition of emission and transmission data for improved thallium-201 cardiac SPECT imaging using a technetium-99m transmission source. J Nucl Med 1992;33:2238–45.

    PubMed  CAS  Google Scholar 

  44. Manglos SH, Gagne GM, Bassano DA. Quantitative analysis of image trucation in focal-beam CT. Phys Med Biol 1993;38:1443–57.

    Article  Google Scholar 

  45. Tsui BMW, Zhao XD, Vernon P, Nowak D, Perry JR, McCartney WH. Cardiac SPECT reconstructions with truncated projections in different SPECT system designs. J Nucl Med 1992;33:831.

    Google Scholar 

  46. Gregoriou GK, Tsui BMW, Gullberg GT. Evaluation of the effect of truncation in fan-beam cardiac SPECT using an observer study. J Nucl Med 1994;35:P4–5.

    Google Scholar 

  47. Loncaric S, Chang W, Huang G. Using simultaneous transmission and scatter SPECT imaging from external sources for the determination of the thoracic u-map. IEEE Trans Nucl Sci 1994;41:1601–6.

    Article  Google Scholar 

  48. Pan T-S, King MA, Penney BC, Rajeevan N, Luo D-S, Case JA. Reduction of truncation artifacts in fan beam transmission by Using Parallel Beam Emission Data. IEEE Trans Nucl Sci 1995;42:1310–20.

    Article  Google Scholar 

  49. Case JA, Pan T-S, King MA, Luo D-S, Penney BC, Rabin MSZ. Reduction of truncation artifacts in fan-beam transmission imaging using a spatially varying gamma prior. IEEE Trans Nucl Sci [in press].

  50. Chang W, Loncaric, Huang G, Sanpitak P. Asymmetrical fan transmission CT on SPECT systems. Phys Med Biol 1995;40:913–28.

    Article  PubMed  CAS  Google Scholar 

  51. Hawman EG, Ficaro EP, Hamill JJ, Schwaiger M. Fan beam collimation with off center focus for simultaneous emission/transmission SPECT in multi-camera SPECT systems. J Nucl Med 1994;35:P92.

    Google Scholar 

  52. Tsui BMW, Frey EC, Lalush DS, et al. A fast sequential SPECT/TCT data acquisition method for accurate attenuation compensation in cardiac SPECT. J Nucl Med 1995;36:169P.

    Google Scholar 

  53. Gilland DR, Jaszczak RJ, Turkington TG, Greer KL, Coleman RE. Quantitative SPECT imaging with indium-111. IEEE Trans Nucl Sci 1991;38:761–6.

    Article  CAS  Google Scholar 

  54. King MA, Luo D-S, Dahlberg ST, Penney BC, Morgan HT. Transmission and emission SPECT imaging of attenuator and source distributions larger than the camera field of view. J Nucl Med 1994;35:P92.

    Google Scholar 

  55. Links JM. Multidetector single-photon emission tomography: are two (or three or four) heads really better than one? Eur J Nucl Med 1993;20:440–7.

    Article  PubMed  CAS  Google Scholar 

  56. Faber TL. Multiheaded rotating gamma cameras in cardiac single-photon emission computed tomographic imaging. J Nucl Cardiol 1994;1:292–303.

    Article  PubMed  CAS  Google Scholar 

  57. Ficaro EP, Fessler JA, Rogers WL, Schwaiger M. Comparison of americium-241 and technetium-99m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med 1994;35:652–63.

    PubMed  CAS  Google Scholar 

  58. Welch A, Gullberg GT, Christian PE, Datz FL. A comparison of Gd/Tc versus Tc/T1 simultaneous transmission and emission imaging using both single and triple detector fan-beam SPECT systems. IEEE Trans Nucl Sci 1994;41:2779–86.

    Article  CAS  Google Scholar 

  59. Frey EC, Tsui BMW. A comparison of Gd-153 and Co-57 as transmission sources for simultaneous TCT and T1-201 SPECT. IEEE Trans Nucl Sci 1995;42:1201–6.

    Article  CAS  Google Scholar 

  60. Tung C-H, Gullberg GT. A simulation of emission and transmission noise propagation in cardiac SPECT imaging with nonuniform attenuation correction. Med Phys 1994;21:1565–76.

    Article  PubMed  CAS  Google Scholar 

  61. Tsui BMW, Zhao XD, Lalush DS, et al. Pitfalls of attenuation compensation and their remedies in cardiac SPECT. J Nucl Med 1994;35:115P.

    Google Scholar 

  62. Madsen MT, Kirchner PT, Edlin JP, Nathan MA, Kahn D. An emission-based technique for obtaining attenuation correction data for myocardial SPECT studies. Nucl Med Comm 1993;14:689–95.

    Article  CAS  Google Scholar 

  63. Wallis JW, Miller TR, Koppel P. Attenuation correction in cardiac SPECT without a transmission measurement. J Nucl Med 1995;36:506–12.

    PubMed  CAS  Google Scholar 

  64. Pan T-S, King MA, deVries DJ, Ljungberg M. Segmentation of the body and lungs from Compton scatter window data in SPECT: a Monte Carlo investigation. IEEE Trans Med Imag [in press].

  65. Pan T-S, King MA, Penney BC, Rajeevan N. Segmentation of the body, lungs, and patient table from scatter and primary window images in SPECT. J Nucl Med 1993;34:195P.

    Google Scholar 

  66. Van Dyk J, Keane TJ, Rider WD. Lung density as measured by computerized tomography: implications for radiotherapy. Int J Rad Oncol Biol Phys 1982;8:1363–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by US Public Health grant HL50349 of the National Heart, Lung, and Blood Institute. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Heart, Lung, and Blood Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, M.A., Tsui, B.M.W. & Pan, TS. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 2, 513–524 (1995). https://doi.org/10.1016/S1071-3581(05)80044-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(05)80044-3

Key Words

Navigation