Skip to main content
Log in

Exercise training improves insulin-stimulated myocardial glucose uptake in patients with dilated cardiomyopathy

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

The effects of exercise training on myocardial substrate utilization have not previously been studied in patients with idiopathic dilated cardiomyopathy and mild heart failure.>/<

Methods and Results

Myocardial glucose uptake was studied in 15 clinically stable patients with dilated cardiomyopathy (New York Heart Association class I-II, ejection fraction 34% ± 8%) with the use of 2-[fluorine 18]fluoro-2-deoxy-D-glucose ([F-18]FDG) and positron emission tomography under euglycemic hyperinsulinemia. Eight of these patients participated in a 5-month endurance and strength training program, whereas seven patients served as nontrained subjects. Left ventricular function was assessed by 2-dimensional echocardiography before and after the intervention. After the training period, insulin-stimulated myocardial fractional [F-18]FDG uptake and glucose uptake rates were significantly increased in the anterior, lateral, and septal walls (P > .01) in the trained subjects but remained unchanged in the nontrained subjects. In the trained patients, whole-body insulin-stimulated glucose uptake was enhanced and serum free fatty acid levels were suppressed during hyperinsulinemia compared with the baseline study (P > .05). No changes were observed in the nontrained group.>/<

Conclusions

These results indicate that exercise training in patients with dilated cardiomyopathy improves insulin-stimulated myocardial glucose uptake. This improvement in glucose uptake may be indicative of a switch in myocardial preference to a more energy-efficient substrate. >/<

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belardinelli R, Georgiou D, Cianci G, Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 1999;99:1173–82.

    PubMed  CAS  Google Scholar 

  2. Delagardelle C, Feiereisen P, Krecke R, Essamri B, Beissel J. Objective effects of a 6 months' endurance and strength training program in outpatients with congestive heart failure. Med Sci Sports Exerc 1999;31:1102–7.

    Article  PubMed  CAS  Google Scholar 

  3. Hambrecht R, Fiehn E, Weigl C, et al Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998;98:2709–15.

    PubMed  CAS  Google Scholar 

  4. Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation 1988;78:506–15.

    PubMed  CAS  Google Scholar 

  5. Hare DL, Ryan TM, Selig SE, et al Resistance exercise training increases muscle strength, endurance, and blood flow in patients with chronic heart failure. Am J Cardiol 1999;83:1674–7, A7.

    Article  PubMed  CAS  Google Scholar 

  6. Magnusson G, Gordon A, Kaijser L, et al High intensity knee extensor training, in patients with chronic heart failure. Major skeletal muscle improvement. Eur Heart J 1996;17:1048–55.

    PubMed  CAS  Google Scholar 

  7. Maiorana A, O'Driscoll G, Cheetham C, et al Combined aerobic and resistance exercise training improves functional capacity and strength in CHF. J Appl Physiol 2000;88:1565–70.

    PubMed  CAS  Google Scholar 

  8. Linke A, Schoene N, Gielen S, et al Endothelial dysfunction in patients with chronic heart failure: systemic effects of lower-limb exercise training. J Am Coll Cardiol 2001;37:392–7.

    Article  PubMed  CAS  Google Scholar 

  9. Hambrecht R, Fiehn E, Yu J, et al Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 1997;29:1067–73.

    Article  PubMed  CAS  Google Scholar 

  10. Bengel FM, Permanetter B, Ungerer M, Nekolla S, Schwaiger M. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate-comparison between the normal and failing human heart. Eur J Nucl Med 2000;27:319–26.

    Article  PubMed  CAS  Google Scholar 

  11. Davila-Roman VG, Vedala G, Herrero P, et al Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271–7.

    Article  PubMed  CAS  Google Scholar 

  12. Paternostro G, Camici PG, Lammerstma AA, et al Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Invest 1996;98:2094–9.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor M, Wallhaus TR, DeGrado TR, et al An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J Nucl Med 2001;42:55–62.

    PubMed  CAS  Google Scholar 

  14. Kainulainen H, Virtanen P, Ruskoaho H, Takala TE. Training increases cardiac glucose uptake during rest and exercise in rats. Am J Physiol 1989;257:H839–45.

    PubMed  CAS  Google Scholar 

  15. Kainulainen H, Komulainen J, Takala T, Vihko V. Effect of chronic exercise on glucose uptake and activities of glycolytic enzymes measured regionally in rat heart. Basic Res Cardiol 1989;84:174–90.

    Article  PubMed  CAS  Google Scholar 

  16. Martineau LC, Chadan SG, Parkhouse WS. Age-associated alterations in cardiac and skeletal muscle glucose transporters, insulin and IGF-1 receptors, and PI3-kinase protein contents in the C57BL/6 mouse. Mech Ageing Dev 1999;106:217–32.

    Article  PubMed  CAS  Google Scholar 

  17. Martineau LC, Chadan SG, Parkhouse WS. Resistance of the aged myocardium to exercise-induced chronic changes in glucose transport related protein content. Mech Ageing Dev 1999;110:109–18.

    Article  PubMed  CAS  Google Scholar 

  18. Stuewe SR, Gwirtz PA, Agarwal N, Mallet RT. Exercise training enhances glycolytic and oxidative enzymes in canine ventricular myocardium. J Mol Cell Cardiol 2000;32:903–13.

    Article  PubMed  CAS  Google Scholar 

  19. Stolen KQ, Kemppainen J, Ukkonen H, et al Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy. J Am Coll Cardiol 2003;41:460–7.

    Article  PubMed  CAS  Google Scholar 

  20. Noble BJ, Borg GA, Jacobs I, Ceci R, Kaiser P. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med Sci Sports Exerc 1983;15:523–8.

    PubMed  CAS  Google Scholar 

  21. Jackson A, Pollock M. Practical assessment of body composition. Phys Sportsmed 1985;13:76–90.

    Google Scholar 

  22. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237:E214–23.

    PubMed  CAS  Google Scholar 

  23. Nuutila P, Peltoniemi P, Oikonen V, et al Enhanced stimulation of glucose uptake by insulin increases exercise-stimulated glucose uptake in skeletal muscle in humans: studies using [15O]O2, [15O]H2O, [18F]fluoro-deoxy-glucose, and positron emission tomography. Diabetes 2000;49:1084–91.

    Article  PubMed  CAS  Google Scholar 

  24. Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 1986;27:235–8.

    PubMed  CAS  Google Scholar 

  25. Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 1997;24:258–65.

    PubMed  CAS  Google Scholar 

  26. Schelbert H, Schwaiger M. Positron emission tomography and autoradiography: principles and applications for the brain and heart. In: Phelps M, Marizziotta J, Schelbert H, editors. PET studies of the heart. New York: Raven Press; 1986. p. 599–616.

    Google Scholar 

  27. Sokoloff L, Reivich M, Kennedy C, et al The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.

    Article  PubMed  CAS  Google Scholar 

  28. Ng CK, Soufer R, McNulty PH. Effect of hyperinsulinemia on myocardial fluorine-18-FDG uptake. J Nucl Med 1998;39:379–83.

    PubMed  CAS  Google Scholar 

  29. Stolen K, Kemppainen J, Kalliokoski K, et al Left and right ventricular oxidative metabolism in patients with mild heart failure [abstract]. Eur J Heart Fail Suppl 2002;1:S39.

    Google Scholar 

  30. Paolisso G, Gambardella A, Galzerano D, et al Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism 1994;43:174–9.

    Article  PubMed  CAS  Google Scholar 

  31. Opie L. The heart physiology, from cell to circulation. 3rd ed. Philadelphia: Lippincott-Raven; 1998.

    Google Scholar 

  32. Beanlands RS, Nahmias C, Gordon E, et al The effects of beta(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: a double-blind, placebo-controlled, positron-emission tomography study. Circulation 2000;102:2070–5.

    PubMed  CAS  Google Scholar 

  33. Wallhaus TR, Taylor M, DeGrado TR, et al Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001;103:2441–6.

    PubMed  CAS  Google Scholar 

  34. Eichhorn EJ, Heesch CM, Barnett JH, et al Effect of metoprolol on myocardial function and energetics in patients with nonischemic dilated cardiomyopathy: a randomized, double-blind, placebocontrolled study. J Am Coll Cardiol 1994;24:1310–20.

    Article  PubMed  CAS  Google Scholar 

  35. Knuuti MJ, Maki M, Yki-Jarvinen H, et al The effect of insulin and FFA on myocardial glucose uptake. J Mol Cell Cardiol 1995;27:1359–67.

    Article  PubMed  CAS  Google Scholar 

  36. Nuutila P, Knuuti MJ, Raitakari M, et al Effect of antilipolysis on heart and skeletal muscle glucose uptake in overnight fasted humans. Am J Physiol 1994;267:E941–6.

    PubMed  CAS  Google Scholar 

  37. Pietila M, Malminiemi K, Vesalainen R, et al Exercise training in chronic heart failure: beneficial effects on cardiac (11)C-hydroxyephedrine PET, autonomic nervous control, and ventricular repolarization. J Nucl Med 2002;43:773–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhani Knuuti.

Additional information

This study was supported in part by the Ministry of Education, the Aarne Koskelo Foundation, the Research Foundation of Orion Corporation, and the Finnish Cardiovascular Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolen, K.Q., Kemppainen, J., Kalliokoski, K.K. et al. Exercise training improves insulin-stimulated myocardial glucose uptake in patients with dilated cardiomyopathy. J Nucl Cardiol 10, 447–455 (2003). https://doi.org/10.1016/S1071-3581(03)00528-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(03)00528-2

Key Words

Navigation