Skip to main content
Log in

Use of carbon 11-acetate for the measurement of myocardial oxygen consumption

  • Editorials
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bergmann SR, Sobel BE. Quantification of regional myocardial oxidative utilization by positron emission tomography. In: Bergmann SR, Sobel BE, iditors. Positron emission tomography of the heart. Futura Publishing, Inc; Mount Kisco (NY): 1992. p. 209–29.

    Google Scholar 

  2. Iida H, Rhodes CG, Araujou LI, Yamamoto Y, de Silva R, Maseri A. Noninvasive quantification of regional myocardial metabolic rate for oxygen by use of 15O2 inhalation and positron emission tomography. Circulation 1996;94:792–807.

    PubMed  CAS  Google Scholar 

  3. Yamamoto Y, de Silva R, Rhodes CG, Iida H, Lammertsma AA, Jones T, et al. Noninvasive quantification of regional myocardial metabolic rate of oxygen by 15O2 inhalation and positron emission tomography. Experimental validation. Circulation 1996;94:808–16.

    PubMed  CAS  Google Scholar 

  4. Brown MA, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11 labeled acetate. Circulation 1987;76:687–96.

    PubMed  CAS  Google Scholar 

  5. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 1988;12:1054–63.

    PubMed  CAS  Google Scholar 

  6. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989;30:187–93.

    PubMed  CAS  Google Scholar 

  7. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1–11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990;81:1594–605.

    PubMed  CAS  Google Scholar 

  8. Henes GC, Bergmann SR, Walsh MN, Sobel BE, Geltman EM. Asessment of myocardial oxidative metabolic resave with positron emission tomography and carbon-11 acetate. J Nucl Med 1989;30:1489–99.

    PubMed  CAS  Google Scholar 

  9. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1–11C]acetate and dynamic positron tomography. Circulation 1989;80:863–72.

    PubMed  CAS  Google Scholar 

  10. Gropler RJ, Shelton ME, Herrero P, Walsh JF, Bergmann SR. Measurement of myocardial oxygen consumption using positron emission tomography and C-11 acetate: direct validation in human subjects. Circulation 1993;88:I-172.

    Google Scholar 

  11. Shields AF, Graham MM, Kozawa SM, et al. Contribution of labeled carbon dioxide to PET imaging of carbon-11-labeled compounds. J Nucl Med 1992;33:581–4.

    PubMed  CAS  Google Scholar 

  12. Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 1991;32:1950–7.

    PubMed  CAS  Google Scholar 

  13. van den Hoff J, Burchert W, Wolpers HG, Meyer GJ, Hundeshagen H. A kinetic model for cardiac PET with [1-carbon-11]-acetate. J Nucl Med 1996;37:521–9.

    PubMed  Google Scholar 

  14. Sun KT, Chen K, Huang SC, et al. Compartment model for measuring myocardial oxygen consumption using [1–11C]acetate. J Nucl Med 1997;38:459–66.

    PubMed  CAS  Google Scholar 

  15. Herrero P, Gropler RJ, Shelton ME, Bergmann SR. Use of compartmental models of carbon-11 acetate to measure myocardial oxygen consumption: validation in human subjects [abstract]. J Nucl Med 1996;37:222P.

    Google Scholar 

  16. Walsh MN, Geltman EM, Brown MA, Henes CG, Weinheimer CJ, Sobel BE, et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 1989;30:1798–808.

    PubMed  CAS  Google Scholar 

  17. Weinheimer CJ, Brown MA, Nohara R, Perez JE, Bergmann SR. Functional recovery after reperfusion is predicated on recovery of myocardial oxidative metabolism. Am Heart J 1993;125:939–49.

    Article  PubMed  CAS  Google Scholar 

  18. Bergmann SR, Weinheimer CJ, Brown MA, Perez JE. Enhancement of regional myocardial efficiency and persistence of perfusion, oxidative and functional reserve with paired pacing of stunned myocardium. Circulation 1994;89:2290–6.

    PubMed  CAS  Google Scholar 

  19. Heyndrickx GR, Wijns W, Vogelaers D, et al. Recovery of regional contractile function and oxidative metabolism in stunned myocardium induced by 1-hour circumflex coronary artery stenosis in chronically instrumented dogs. Circ Res 1993;72:901–13.

    PubMed  CAS  Google Scholar 

  20. Henes CG, Bergmann SR, Perez JE, Sobel BE, Geltman EM. The time course of restoration of nutritive perfusion, myocardial oxygen consumption, and regional function after coronary thrombolysis. Coronary Artery Dis 1990;1:687–96.

    Article  Google Scholar 

  21. Kalff V, Hicks RJ, Hutchins G, Topol E, Schwaiger M. Use of carbon-11 acetate and dynamic positron emission tomography to assess regional myocardial oxygen consumption in patients with acute myocardial infarction receiving thrombolysis or coronary angioplasty. Am J Cardiol 1993;71:529–35.

    Article  PubMed  CAS  Google Scholar 

  22. Gropler RJ, Siegel BA, Sampathkumaran K, Perez JZ, Sobel BE, Bergmann SR, et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 1992;19:989–97.

    PubMed  CAS  Google Scholar 

  23. Gropler RJ, Gelunan EM, Sampathkumaran R, Perez JE, Moerlein SM, Sobel BE, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 1992;20:569–77.

    Article  PubMed  CAS  Google Scholar 

  24. Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Conversano A, Sobel BE, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–97.

    PubMed  CAS  Google Scholar 

  25. Rubin PJ, Lee DS, Davila-Roman VG, Geltman EM, Schechtman KB, Bergmann SR, et al. Superiority of C-11 acetate compared with F-18 fluorodeoxyglucose in predicting myocardial functional recovery by positron emission tomogrpahy in patients with acute myocardial infarction. Am J Cardiol 1996;78:1230–6.

    Article  PubMed  CAS  Google Scholar 

  26. Bergmann SR. Delineation of viable myocardium with metabolic imaging. In: Iskandrian AS, van der Wall EE, editors. Myocardial viability: detection and clinical relevance. Kluwer Academic Publishers, Inc; Dordrecht, The Netherlands: 1994. p. 53–70.

    Google Scholar 

  27. Rubin PR, Bergmann SR. Assessment of myocardial viability with positron emission tomography after coronary thrombolysis. In: Nienaber CA, editor. Imaging and intervention in cardiology. Kluwer Academic Publishers, Inc; Dordrecht, The Netherlands: 1996. p. 43–52.

    Google Scholar 

  28. Wolpers HG, Buck A, Nguyen N, et al. An approach to ventricular efficiency by use of carbon 11-labeled acetate and positron emission tomography. J Nucl Cardiol 1994;1:262–9.

    Article  PubMed  CAS  Google Scholar 

  29. Beanlands RS, Armstrong WF, Hicks RJ, et al. The effects of afterload reduction on myocardial carbon 11-labeled acetate kinetics and noninvasively estimated mechanical efficiency in patients with dilated cardiomyopathy. J Nucl Cardiol 1994;1:3–16.

    Article  PubMed  CAS  Google Scholar 

  30. Ishiwata S, Maruno H, Senda M, et al. Mechanical efficiency in hypertrophic cardiomyopathy assessed by positron emission tomography with carbon 11 acetate. Am Heart J 1997;133:497–503.

    Article  PubMed  CAS  Google Scholar 

  31. Gropler RJ, Siegel BA, Geltman EM. Myocardial uptake of carbon-11-acetate as an indirect estimate of regional myocardial blood flow. J Nucl Med 1991;32:245–51.

    PubMed  CAS  Google Scholar 

  32. Sun KT, Yeatman LA, Buxton DB, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11] acetate. J Nucl Med 1998;39:272–80.

    PubMed  CAS  Google Scholar 

  33. Herrero P, Hartman JJ, Gropler RJ, Bergmann SR. Quantification of myocardial perfusion with PET using carbon-11 acetate and a compartmental model in human subjects [abstract]. J Nucl Med 1996;37:83P.

    Google Scholar 

  34. Sciacca R, Akinboboye O, Chou RL, Epstein S, Bergmann SR. Quantitative Assessment of myocardial perfusion using 1–11C-acetate [abstract]. J Nucl Med 1999;40:8P.

    Google Scholar 

  35. Klein KJ, Visser FC, Nurmohamed A, et al. Feasibility of planar myocardial carbon 11-acetate imaging. J Nucl Cardiol 2000;7:221–7.

    Article  PubMed  CAS  Google Scholar 

  36. Kofoed KF, Hansen PR, Holm S, et al. Regional myocardial oxygen consumption estimated by [1-carbon-11] acetate and positron emission tomography before and after repetitive ischemia. J Nucl Cardiol 2000;7:228–34.

    Article  PubMed  CAS  Google Scholar 

  37. Conversano A, Walsh JF, Geltman EM, Perez JE, Bergmann SR, Gropler RJ. Delineation of myocardial stunning and hibernation by positron emission tomography in patients with advanced coronary artery disease. Am Heart J 1996;131:440–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R Bergmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinboboye, O., Bergmann, S.R. Use of carbon 11-acetate for the measurement of myocardial oxygen consumption. J Nucl Cardiol 7, 282–285 (2000). https://doi.org/10.1016/S1071-3581(00)70019-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(00)70019-5

Navigation