Skip to main content
Log in

Differentiation of O-acetyl and O-carbamoyl

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Nod factors are substituted N-acyl chito-oligomers secreted by plant symbiotic bacteria of the Rhizobium family. Substitutions on the oligosaccharide core specify their recognition by host plants. A method using tandem mass spectrometry is proposed to locate the O-acetyl and O-carbamoyl substituents on the nonreducing terminal residue of the chito-oligomers. As model compounds, all the positional isomers of monoacetyl and monocarbamoyl esters of 1-O-methyl-N-acetyl-α-D-glucosamine were synthesized. Oxonium ions (MH − CH3OH)+ were generated by liquid secondary ion mass spectrometry (LSIMS) and their decomposition was recorded on a tandem magnetic instrument. Large differences were observed in the relative abundances of ions resulting from elimination of water and of the O-ester substituent from metastable oxonium ions. Deuterium exchange reactions indicated parallel elimination pathways involving either exchangeable or carbon-linked hydrogens. The intensity ratios of some of the ions generated by collisions with helium atoms allowed the isomers to be distinguished. The main dissociation routes were identified. Metastable and collision-induced decomposition of the B1 ions from Nod factors of Sinorhizobium meliloti and Azorhizobium caulinodans resembled that of the 6-O-substituted N-acetylglucosamine models. Decomposition of the B1 ion from Mesorhizobium loti and Rhizobium etli Nod factors, was similar to that of 3-O-carbamoyl N-acetyl-glucosamine and different to that of the 4-O isomer. 6-O- and 3-O-carbamoylation specified by the nodU and nolO genes, respectively, of Rhizobium. sp. NGR234 were confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lerouge, P.; Roche, P.; Faucher, C.; Maillet, F.; Truchet, G.; Promé, J. C.; Dénarié, J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated oligosaccharide signal. Nature 1990, 344, 781–784.

    Article  CAS  Google Scholar 

  2. Spaink, H. P.; Sheeley, D. M.; van Brussel, A. A. N.; Glushka, J.; York, W. S.; Tak, T.; Geiger, O.; Kennedy, E. P.; Reinhold, V. N.; Lugtemberg, B. J. J. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 1991, 354, 125–130.

    Article  CAS  Google Scholar 

  3. Mergaert, P.; Van Montagu, M.; Holsters, M. Molecular mechanisms of Nod factors diversity. Mol. Microbiol. 1997, 25, 811–817.

    Article  CAS  Google Scholar 

  4. Mylona, P.; Pawlowski, K.; Bisseling, T. Symbiotic nitrogen fixation. Plant Cell 1995, 7, 869–885.

    Article  CAS  Google Scholar 

  5. Hamst, E.; Spaink, H. P.; Kafetzopoulos, D. Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. In Plant Microbe Interactions (Subcellular Biochemistry), Biswas, B. B.; Das, H. K., Eds., Plenum: New York, 1998; Vol 29, pp 29–71.

    Google Scholar 

  6. Relic, B.; Perret, X.; Estrada-Garcia, M. T.; Kopcinska, J.; Golinovki, W.; Krishnan, H. B.; Pueppke, S. G.; Broughton, W. J. Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 1994, 13, 171–178.

    Article  CAS  Google Scholar 

  7. Dénarié, J.; Debellé, F.; Promé, J.-C. Rhizobium lipo-chitooligo-saccharide nodulation factors: signalling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 1996, 65, 503–535.

    Article  Google Scholar 

  8. Olsthoorn, M. M. A.; Lopez-Lara, I. M.; Petersen, B. O.; Bock, K.; Haverkamp, J.; Spaink, H. P.; Thomas-Oates, J. E. Novel branched Nod factor structure results from α-(1–3) fucosyl transferase activity: the major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213 bear an α-(1–3) fucosyl substituent on a nonterminal backbone residue. Biochemistry 1998, 37, 9027–9032.

    Google Scholar 

  9. Angel, A.-S.; Nilson, B. Linkage positions in glycoconjugates by periodate oxidation and fast atom bombardment mass spectrometry. Methods Enzymol. 1990, 193, 587–607.

    Article  CAS  Google Scholar 

  10. Mergaert, P.; Van Montagu, M.; Promé, J.-C.; Holsters, M. Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbaoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS 571. Proc. Natl. Acad. Sci. USA 1993, 90, 1551–1555.

    Article  CAS  Google Scholar 

  11. Roche, P.; Lerouge, P.; Ponthus, C.; Promé, J.-C. Structural determination of bacterial nodulation factors involved in the Rhizobium meliloti-alfalfa symbiosis. J. Biol. Chem. 1991, 266, 10933–10940.

    CAS  Google Scholar 

  12. Jabbouri, S.; Fellay, R.; Talmont, F.; Kamalaprija, P.; Burger, U.; Relic, B.; Promé, J.-C.; Broughton, W. J. Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 Nod factors. J. Biol. Chem. 1995, 270, 22968–22973.

    Article  CAS  Google Scholar 

  13. Jabbouri, S.; Relic, B.; Hanin, M.; Kamalaprija, P.; Burger, U.; Promé, J.-C.; Broughton, W. J. nolO and noeI (HsnIII) of Rhizobium sp. NGR 234 are involved in 3-O-carbamoylation and 2-O methylation of Nod factors. J. Biol. Chem. 1998, 273, 12047–12055.

    Article  CAS  Google Scholar 

  14. Lòpez-Lara, I. M.; Van den Berg, J. D. J.; Thomas-Oates, J. E.; Glushka, J.; Lugtenberg, B. J. J.; Spaink, H. P. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol. Microbiol. 1995, 15, 627–638.

    Article  Google Scholar 

  15. Cardenas, L.; Dominguez, J.; Quinto, C.; Lopez-Lara, I. M.; Lugtemberg, B. J. J.; Spaink, H. P.; Rademaker, G. J.; Haverkamp, J.; Thomas-Oates, J. E. Isolation, chemical structures and biological activities of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Mol. Biol. 1995, 29, 453–464.

    Article  CAS  Google Scholar 

  16. Guevremont, R.; Wright, J. L. C. FAB and sequential mass spectrometry with a VG ZAB-EQ: Hexose stereoisomers. Rapid Commun. Mass Spectrom. 1987, 1, 12–13.

    Article  CAS  Google Scholar 

  17. Vouros, P.; Müller, D. R.; Richter, W. J. Low-energy collision-induced dissociation of B1-type sugar ions formed from peracetylated methyl pentosides and methyl 6-deoxyhexosides. J. Mass Spectrom. 1999, 34, 346–353.

    Article  CAS  Google Scholar 

  18. Müller, D. R.; Domon, B.; Richter, W. J. Application of tandem mass spectrometry in the structure determination of complex biomolecules. Spectrosc. Int. 1989, 7, 11–22.

    Google Scholar 

  19. Kocovsky, P. Carbamates, a method of synthesis and some synthetic applications. Tetrahedron Lett. 1986, 27, 5521–5524.

    Article  CAS  Google Scholar 

  20. Millar, A.; Kim, K. H.; Minster, D. K.; Ohji, T.; Hecht, S. M. Synthesis of the carbohydrate moiety of bleomycin: 2,3,4,6-tetra-O-substituted D-mannose derivatives. J. Org. Chem. 1986, 51, 189–196.

    Article  CAS  Google Scholar 

  21. Corvera, A.; Promé, D.; Promé, J. C.; Martinez-Romero, E.; Romero, D. The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in nodulation factor. Mol. Plant-Microbe Interact. 1999, 12, 236–246.

    Article  CAS  Google Scholar 

  22. Poupot, R.; Martinez-Romero, E.; Gautier, N.; Promé, J. C. Wild type Rhizobium etli, a bean symbiont, produces acetylfucosylated, N-methylated and carbamoylated nodulation factors. J. Biol. Chem. 1995, 270, 6050–6055.

    Article  CAS  Google Scholar 

  23. Dell, A. FAB mass spectrometry of carbohydrates. Adv. Carbohyd. Chem. Biochem. 1987, 45, 19–72.

    Article  CAS  Google Scholar 

  24. Egge, H.; Peter-Katalinic, J. Fast-atom bombardment mass spectrometry for structural elucidation of carbohydrates. Mass Spectrom. Rev. 1987, 6, 331–393.

    Article  CAS  Google Scholar 

  25. Richter, W. J.; Müller, D. R.; Domon, B. Tandem mass spectrometry in structural characterization of oligosaccharide residues in glycoconjugates. Methods Enzymol. 1990, 193, 607–623.

    Article  CAS  Google Scholar 

  26. Price, N. P. J.; Relic, B.; Talmont, F.; Lewin, A.; Promé, D.; Pueppke, S. G.; Maillet, F.; Dénarié, J.; Promé, J. C.; Broughton, W. J. Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated and fucosylated nodulation signals that are O-acetylated or O-sulphated. Mol. Microbiol. 1992, 6, 3575–3584.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Promé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treilhou, M., Ferro, M., Monteiro, C. et al. Differentiation of O-acetyl and O-carbamoyl. J Am Soc Mass Spectrom 11, 301–311 (2000). https://doi.org/10.1016/S1044-0305(99)00152-X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00152-X

Keywords

Navigation