Skip to main content
Log in

Characterization of an improved thermal ionization cavity source for mass spectrometry

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

A new thermal ionization source for use with a quadrupole mass spectrometer has been designed and characterized. The new source provides significant advantages over the previously reported prototype source and traditional filament-type thermal ionization sources. The operational interface between the source and the quadrupole mass spectrometer has been redesigned. A vacuum interlock, a translational stage, and an adjustable insertion probe are added to improve the source performance. With these modifications, the source is easier to operate while maximizing sample throughput. In this work, the performance of the newly developed source is examined. The ionization efficiencies are measured with a quadrupole mass spectrometer. The efficiency values obtained with this system are comparable to those obtained from a large scale isotope separator. The relationships among the ionization potential, vapor pressure, and measured ionization efficiency results are discussed. The crucible lifetime has been quantitatively estimated by measuring the crucible sputtering rate. Diagnostic studies of the new source show that the crucible position is a crucial parameter for sensitivity and performance. Stability tests demonstrate that the source can be run several weeks at a fixed emission current without significant degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnard, G. P. Modern Mass Spectrometry; Institute of Physics: London, 1953.

    Google Scholar 

  2. Thode, H. G.; McMullen, C. C.; Fritze, K. Advances in Inorganic Chemistry and Radiochemistry; Academic: New York, 1960; Vol. 2, pp 315–362.

    Google Scholar 

  3. Inghram, M. G.; Chupka, W. A. Rev. Sci. Instrum. 1953, 24, 518.

    Article  CAS  Google Scholar 

  4. White, F. A.; Collins, T. L.; Rourke, F. M. Phys. Rev. 1956, 101, 1786.

    Article  CAS  Google Scholar 

  5. Mchugh, J. A. Int. J. Mass Spectrom. Ion Phys. 1969, 3, 267.

    Article  CAS  Google Scholar 

  6. Dietz, L. A. Rev. Sci. Instrum. 1959, 30, 235.

    Article  Google Scholar 

  7. Delmore, J. E. J. Phys. Chem. 1987, 91, 2883.

    Article  CAS  Google Scholar 

  8. Rokop, D. J.; Perrin, R. E.; Knobeloch, G. W.; Armijo, V. M.; Shields, W. R. Anal. Chem. 1982, 54, 957.

    Article  CAS  Google Scholar 

  9. Shmid, M.; Engler, G.; Yoresh, I.; Skurnik, E. Nucl. Instrum. Methods 1981, 186, 349.

    Article  CAS  Google Scholar 

  10. Volpe, A. M.; Olivares, J. A.; Murrell, M. T. Anal. Chem. 1991, 63, 913.

    Article  CAS  Google Scholar 

  11. Beyer, G. J.; Herrmann, E.; Piotrowski, A.; Raiko, V. I.; Tyrroff, H. Nucl. Instrum. Methods 1971, 96, 437.

    Article  CAS  Google Scholar 

  12. Beyer, G. J.; Herrmann, E.; Molnar, F.; Raiko, V. I.; Tyrroff, H. Radiochem. Radioanal. Lett. 1972, 12, 259.

    CAS  Google Scholar 

  13. Johnson, P. G.; Bolson, A.; Henderson, C. M. Nucl. Instrum. Methods 1973, 106, 83.

    Article  CAS  Google Scholar 

  14. Karnaukhov, V. A.; Bogdanov, D. D.; Demyanov, A. V.; Koval, G. I.; Petrov, L. A. Nucl. Instrum. Methods 1974, 120, 69.

    Article  CAS  Google Scholar 

  15. Latuszynski, A.; Raiko, V. I. Nucl. Instrum. Methods 1975, 125, 61.

    Article  CAS  Google Scholar 

  16. Kirchner, R. Nucl. Instrum. Methods A 1990, 292, 203.

    Article  Google Scholar 

  17. Kirchner, R. Nucl. Instrum. Methods 1981, 186, 275.

    Article  CAS  Google Scholar 

  18. Afanas’ev, V. P.; Obukhov, V. A.; Raiko, V. I. Nucl. Instrum. Methods 1977, 145, 533.

    Article  Google Scholar 

  19. Kirchner, R.; Piotrowski, A. Nucl. Instrum. Methods 1978, 153, 291.

    Article  CAS  Google Scholar 

  20. Huyse, M. Nucl. Instrum. Methods 1983, 215, 1.

    Article  CAS  Google Scholar 

  21. Amiel, S.; Engler, G.; Nir-el, Y.; Shmid, M. Nucl. Instrum. Methods 1976, 139, 305.

    Article  CAS  Google Scholar 

  22. Shmid, M.; Nir-el, Y.; Engler, G.; Amiel, S. Nucl. Instrum. Methods 1977, 144, 601.

    Article  CAS  Google Scholar 

  23. Spejewski, E. H. Nucl. Instrum. Methods 1981, 186, 317.

    Article  CAS  Google Scholar 

  24. Munzel, J.; Wollnik, H.; Pfeiffer, B.; Jung, G. Nucl. Instrum. Methods 1981, 186, 343.

    Article  Google Scholar 

  25. Piotrowski, A.; Gill, R. L.; McDonald, D. C. Nucl. Instrum. Methods 1984, 224, 1.

    Article  CAS  Google Scholar 

  26. Pilzer, E. H.; Engler, G. Nucl. Instrum. Methods B 1987, 26, 218.

    Article  Google Scholar 

  27. Piotrowski, A. Nucl. Instrum. Methods 1978, 153, 291.

    Article  Google Scholar 

  28. Huyse, M. Nucl. Instrum. Methods 1983, 215, 1.

    Article  CAS  Google Scholar 

  29. Delmore, J. E.; Appelhans, A. D.; Peterson, E. S. Int. J. Mass Spectrom. Ion Processes 1991, 108, 179.

    Article  CAS  Google Scholar 

  30. Duan, Y.; Chamberlin, E. P.; Olivares, J. A. Int. J. Mass Spectrom. Ion Processes 1997, 161, 27.

    Article  CAS  Google Scholar 

  31. Olivares, J. A. ; Garcia, E. M. ; Chamberlin, E. P. Proceedings of the 39th ASMS Conference on Mass Spectrometry and Allied Topics; Nashville, TN, May 19–24, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Y., Danen, R.E., Yan, X. et al. Characterization of an improved thermal ionization cavity source for mass spectrometry. J Am Soc Mass Spectrom 10, 1008–1015 (1999). https://doi.org/10.1016/S1044-0305(99)00065-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00065-3

Keywords

Navigation