Skip to main content
Log in

Multistep tandem mass spectrometry for Sequencing Cyclic Peptides in an Ion-Trap Mass Spectrometer

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Collisionally activated decomposition (CAD) of a protonated cyclic peptide produces a superposition spectrum consisting of fragments produced following random ring opening of the cyclic peptide to give a set of acylium ions (or isomeric equivalents) of the same m/z. Assignment of the correct sequence is often difficult owing to lack of selectivity in the ring opening. A method is presented that utilizes multiple stages of CAD experiments in an electrospray ion-trap mass spectrometer to sequence cyclic peptides. A primary acylium ion is selected from the primary product-ion spectrum and subjected to several stages of CAD. Amino-acid residues are sequentially removed, one at each stage of the CAD, from the C-terminus, until a b2 ion is reached. Results are presented for seven cyclic peptides, ranging in sizes from four to eight amino-acid residues. This method of sequencing cyclic peptides eliminates ambiguities encountered with other MS/MS approaches. The power of the strategy lies in the capability to execute several stages of CAD upon a precursor ion and its decomposition products, allowing the cyclic peptide to be sequenced in an unambiguous, stepwise manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Storm, D. R..; Rosenthal, K. S..; Swanson, P. E. Polymyxin and related antibiotics Annu. Rev. Biochem. 1977, 46, 723–763.

    Article  CAS  Google Scholar 

  2. Kondo, F.; Matsumoto, H.; Yamada, S.; Ishikawa, N.; Ito, E.; Nagata, S.; Ueno, Y.; Suzuki, M.; Harada, K. Detection and identification of metabolites of mycrocystins formed in vivo in mouse and rat livers Chem. Res. Toxicol. 1996, 9, 1355–1359.

    Article  CAS  Google Scholar 

  3. Satoh, T.; Arami, J. M.; Li, S.; Friedman, T. M.; Gao, J.; Edling, A. E.; Townsend, R.; Koch, U.; Chocksi, S.; Germann, M. W.; Korngold, R.; Huang, Z. Bioactive peptide design based on protein surface epitopes. A cyclic heptapeptide mimics CD4 dormain 1 CC′ loop and inhibits biological function. J. Biol. Chem. 1997, 272, 12175–12180.

    Article  CAS  Google Scholar 

  4. Duax, W. L.; Griffin, J. F.; Langs, D. A.; Smith, G. D.; Grouchulski, P.; Pletnev, V.; Ivanov, V. Molecular structure and mechanisms of action of cyclic and linear transport antibiotics. Biopolymers (Peptide Sci.) 1996, 40, 141–155.

    Article  CAS  Google Scholar 

  5. Ihara, M.; Ishikawa, M.; Fukuroda, T.; Saeki, T.; Funabashi, K.; Fukami, T.; Suda, H.; Yano, M. In vitro biological profile of a highly potent novel endothelin (ET) antagonist BQ-123 selective for the ETA receptor. J. Cardiovasc. Pharmacol. 1992, 20, S11-S14 (Suppl 1).

    CAS  Google Scholar 

  6. Yiotakis, A.; Lecoq, A.; Vassiliou, S.; Raynal, I.; Cuniasse, P.; Dive, V. Cyclic peptides with a phosphinic bond a potent inhibitors of a zinc bacterial collagenase. J. Med. Chem. 1994, 37, 2713–2720.

    Article  CAS  Google Scholar 

  7. Gross, M. L.; McCrery, D.; Crow, F.; Tomer, K. B.; Pope, M. R.; Cuifetti, L. M.; Knoch, H. W.; Daly, J. M.; Dunkle, L. D. The structure of the toxin from Helminthosporium carbonum. Tetrahedron. Lett. 1982, 23, 5381–5384.

    CAS  Google Scholar 

  8. Tomer, K. B.; Crow, F. W.; Gross, M. L. Fast atom bombardment combined with tandem mass spectrometry for the determination of cyclic peptides. Anal. Chem. 1984, 56, 880–886.

    Article  CAS  Google Scholar 

  9. Eckart, K.; Schwarz, H.; Tomer, K. B.; Gross, M. L. Tandem mass spectrometry methodology for the sequence determination of cyclic peptides J. Am. Chem. Soc. 1985, 107, 6765–6769.

    Article  CAS  Google Scholar 

  10. Eckart, K. Mass spectrometry of cyclic peptides. Mass Spectrom. Rev. 1994, 13, 23–55.

    Article  CAS  Google Scholar 

  11. Ngoka, L. C. M.; Gross, M. L. Location of sodium binding sites in endothelin A selective receptor antagonists cyclo (D-Trp-D-Asp-Pro-D-Val-Leu) and cyclo (D-Trp-D-Asp-Pro-D-Ile-Leu) by multistep collisionally-activated decomposition in an electrospray ion-trap mass spectrometer, in preparation.

  12. Ngoka, L. C. M.; Gross, M. L.; Toogood, P. L. Sodium-directed selective cleavage of lactones: A method for structure determination of cyclodepsipeptides. Int. J. Mass Spectrom. Ion Processes 1999, 182/183, 289–298.

    CAS  Google Scholar 

  13. Bean, J. W.; Peishoff, C. E.; Kopple, K. D. Conformations of cyclic pentapeptide endothelin receptor antagonists. Int. J. Peptide Protein Res. 1994, 44, 223–232.

    Article  CAS  Google Scholar 

  14. Calcagni, A.; Kajtar-Peredy, M.; Lucente, G.; Luisi, G.; Pinnen, F.; Radics, L.; Rossi, D. Nine-membered cyclodepsitripeptides containing the retroisomeric sequence of ergot peptides. Int. J. Peptide Prot. Res. 1993, 42, 84–92.

    Article  CAS  Google Scholar 

  15. Coles, M.; Sowemimo, V.; Scanlon, D.; Munro, S. L.; Craik, D. J. A conformation study by 1H NMR of a cyclic pentapeptide antagonist of endothelin. J. Med. Chem. 1993, 36, 2658–2665.

    Article  CAS  Google Scholar 

  16. Fesik, S. W.; Bolis, G.; Sham, H. L.; Olejniczak, E. T. Structure refinement of a peptide from two-dimensional NMR data and molecular modeling. Biochemistry 1987, 26, 1851–1859.

    Article  CAS  Google Scholar 

  17. Kessler, H.; Klein, M.; Wagner, K. Peptide conformation. 48. Conformation and biological activity of proline containing cyclic retro-analogues of somatostatin. Int. J. Peptide Prot. Res. 1988, 31, 481–498.

    Article  CAS  Google Scholar 

  18. Mazzeo, M.; Isernia, C.; Rossi, F.; Saviano, M.; Pedone, C.; Paolillo, L.; Benedetti, E.; Pavone, V. Conformational behavior of a cyclolinopeptide A analogue: Two-dimentional NMR study of cyclo (Pro1-Pro-Phe-Phe-Ac6c-Ile-Ala-Val8). J. Peptide Sci. 1995, 1, 330–340.

    Article  CAS  Google Scholar 

  19. Saether, O.; Craik, D. J.; Campbell, I. D.; Sletten, K.; Juul, J.; Norman, D. G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 1995, 34, 4147–4158.

    Article  CAS  Google Scholar 

  20. Despeyroux, D.; Bordas-Nagy, J.; Jennings, K. R. Determination of amino acid sequence of cystine-containing peptides by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 156–159.

    Article  CAS  Google Scholar 

  21. Reinhold, V. N.; Sheeley, D. M. Detailed characterization of carbohydrate linkage and sequence in an ion trap mass spectrometer: Glycosphingolipids. Anal. Biochem. 1998, 259, 28–33.

    Article  CAS  Google Scholar 

  22. Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Characterization of oligosaccharide composition and structure quadrupole ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1493–1504.

    Article  CAS  Google Scholar 

  23. Nourse, B. D.; Cox, K. A.; Morand, K. L.; Cooks, R. G. Collisional activation of pyrene and anthracene in an ion-trap mass spectrometer, J. Am. Chem. Soc. 1992, 114, 2010–2016.

    Article  CAS  Google Scholar 

  24. Strife, R. J.; Ketcha, M. M.; Schwartz, J. Multi-stage mass spectrometry for the isolation and structure elucidation of components of a crude extract. J. Mass Spectrom. 1997, 32, 1226–1235.

    Article  CAS  Google Scholar 

  25. Gross, M. L. Tandem mass spectrometry: Multisector magnetic instruments. In Methods In Enzymology; McCloskey, J. A., Ed.; Academic: San Diego, 1990, Vol 193, pp 131–153.

    Google Scholar 

  26. Ngoka, L. C. M.; Gross, M. L. A nomenclature system for labeling cyclic peptide fragments. J. Am. Soc. Mass Spectrom. 1999, 10, 360–363.

    Article  CAS  Google Scholar 

  27. Yalcin, T.; Khouw, C.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. Why are B ions stable species in peptide spectra J. Am. Soc. Mass Spectrom. 1995, 6, 1165–1174.

    Article  CAS  Google Scholar 

  28. Biemann, K. Nomenclature for peptide fragment ions In Methods in Enzymology; McCluskey, J. A., Ed.; Academic: Orlando, 1990; Vol 193, pp 886–888.

    Google Scholar 

  29. Johnson, R. S.; Martin, S. A.; Biemann, K. Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions. Int. J. Mass Spectrom. Ion Processes 1988, 86, 137–154.

    Article  CAS  Google Scholar 

  30. Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Watson, J. T. Novel fragmentation process by collision-induced decomposition in a tandem mass spectrometer: Differentiation of leucine and isoleucine. Anal. Chem. 1987, 59, 2621–2625.

    Article  CAS  Google Scholar 

  31. Stults, J. S.; Watson, J. T. Identification of a new type of fragment ion in the collisional activation spectra of peptides allows leucine/isoleucine differentiation. Biomed. Environ. Mass Spectrom. 1987, 14, 583–586.

    Article  CAS  Google Scholar 

  32. Bojesen, G. The order of proton affinities of the 20 common L-alpha-amino acids. J. Am. Chem. Soc. 1987, 109, 5557–5558.

    Article  CAS  Google Scholar 

  33. Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Thermochemical determination by the kinetic method. Mass Spectrom. Rev. 1994, 13, 287–339.

    Article  CAS  Google Scholar 

  34. Gorman, G. S.; Speir, J. P.; Turner, C. A.; Amster, I. J. Proton affinities of the 20 common alpha-amino acids. J. Am. Chem. Soc. 1992, 114, 3986–3988.

    Article  CAS  Google Scholar 

  35. Eckart, K.; Schwarz, H. Sequencing of tentoxin by using fast-atom bombardment (FAB)/high resolution (HR)/tandem mass spectrometry (MSMS). Scope and limitation of a novel strategy. Helv. Chim. Acta 1987, 70, 489–498

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngoka, L.C.M., Gross, M.L. Multistep tandem mass spectrometry for Sequencing Cyclic Peptides in an Ion-Trap Mass Spectrometer. J Am Soc Mass Spectrom 10, 732–746 (1999). https://doi.org/10.1016/S1044-0305(99)00049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00049-5

Keywords

Navigation